No. 1 & the Only One!
Study cutting-edge IT in Kyoto, Japan

Link to the Pioneer Spirit

KCGI: The Kyoto College of
Graduate Studies for Informatics

Study cutting-edge IT in Kyoto, Japan

Japan’s first IT professional graduate school

KCGI: The Kyoto College of Graduate Studies for Informatics

Inquiries: Admissions Center,
The Kyoto College of Graduate Studies for Informatics
7 Tanakamonzen-cho, Sakyo-ku, Kyoto 606-8225, Japan
Telephone: 075-681-6334 (+81-75-681-6334 outside Japan)
Fax: 075-671-1382 (+81-75-671-1382 outside Japan)

URL: https://www.kcg.edu/
E-mail: admissions@kcg.edu

京都情報大学院大学
In order to cultivate high level professionals in the field of IT

With the advancements in science and technology, remarkable technological innovations, and radical socioeconomic changes (diversification, increasing complexity, increasing sophistication, globalization, and the arrival of the age of ubiquitous computing, etc.) in recent years, expectations for the education of high level IT professionals viable both in Japan and internationally are rapidly increasing.

In the field of IT, however, which spans such specialty fields as information and management, the number of colleges and graduate schools able to meet the challenges of cultivating high level IT system professionals has been virtually zero until now.

In order to break out of this situation, the Kyoto College of Graduate Studies for Informatics (KCGI) was established in April 2004 as Japan’s first and only IT professional graduate school. KCGI inherits the traditions and achievements of Japan’s first computer educational institution, Kyoto Computer Gakuen, which has trained information processing engineers to meet the needs of industry for over 55 years. KCGI also implements internationally cutting-edge IT curriculums based on a global education network with universities from around the world, including the Rochester Institute of Technology. Further, KCGI’s curriculum also takes into consideration management and administration education: KCGI cultivates top leaders in fields of applying IT such as high level IT professionals and especially CIOs (chief information officers), positions for which it is difficult to receive the proper education at traditional research-oriented graduate schools.

KCGI’s Mission and Purpose

The mission of KCGI is to meet the need for high level and diverse human resources in our IT society and, furthermore, to contribute to the realization of a high level information society and the development of the economy through the provision of high level IT professionals who possess extensive knowledge and high level skills beyond what is conventional and who are also internationally minded in the age of ubiquitous computing. Our purpose is to adapt to developments in information and related technologies and provide education on theory and practical technology in academic fields related to science, technology, and business administration in the training of high level professionals.

Admission Policy

The field of information and communication technology (IT or ICT) is a fusion of information and management studies. The areas in which this discipline is applied are complex and wide-ranging, and the needs of industry for people with skills in this field are constantly growing and diversifying. Under conventional educational systems, the education of IT personnel is left entirely to engineering graduate schools, which accept graduates of university engineering departments only. This framework has proven inadequate to meet the diverse personnel needs of a wide swath of industries. Powering the future growth of industry and business will require the development of people from a diverse array of backgrounds into highly skilled professionals.

Informed by this perspective, the Kyoto College of Graduate Studies for Informatics (KCGI) accepts candidates from a wide range of backgrounds, regardless of the department from which they have graduated. The admission policy of KCGI is to accept persons who meet all of the following three requirements:

1. Possession of the basic academic background necessary to acquire specialized knowledge at KCGI
2. The ability to learn and think for oneself and the desire to create, unencumbered by conventional or prevailing assumptions
3. The will to solve problems by cooperating and communicating with others
The Kyoto College of Graduate Studies for Informatics

Wataru Hasegawa

President, Kyoto Jooh Gakuen
Professor, The Kyoto College of Graduate Studies for Informatics

Bachelor of Arts, Waseda University
Master of Education, Master of Arts, Columbia University, USA
Chairman, Kyoto Prefecture Information Industries Association
Trustee & Chairman, All Nippon Information Industry Association Federation
Representative Director & Prime Vice Chairman, Japan Federation of IT Associations
Trustee, Japan (Nippon) Association for Information Systems
Awards, Minister of Education, Culture, Sports, Tourism (Thailand)
Minister of Education Award of the Republic of Kenya
Visiting professor, Tianjin University of Science & Technology, China

Policy advisory committee, JDC, Jeju Free International City Development Center
Courses: Leadership Theory
http://www.kcg.edu/t курсы/web Xuân_mai1010.html

The Kyoto College of Graduate Studies for Informatics (KCGI) is Japan’s first IT professional graduate school. KCGI’s parent organization, Kyoto Computer Gakuen (KCG), was Japan’s first private computer education institution. KCG was established as a private school by Shigeo Hasegawa and Yasuaki Hasegawa under their unique, forward-looking philosophy. KCG has been engaged in computer education for over 55 years since its establishment in 1963 and during that time not only high school graduates but also many graduates of four year universities have enrolled in and graduated from its programs. At the time of the school’s founding, only research-oriented graduate schools existed in Japan. Many of the students who enrolled after graduating from university chose KCG after searching for an institute of higher education directly connected to the practical side of computers. Even though KCG was organized under the vocational school system, it holds a role in Japanese society as an educational institution for university graduates and has also performed the function of a kind of occupational and practical graduate school. Based on this state of affairs and history, in 1998 KCG established a joint program with graduate programs (including Information Sciences and Technologies, Computer Science, and others) at the Rochester Institute of Technology in the United States and has since implemented a professional graduate school curriculum oriented towards practical learning. This collaboration between a Japanese vocational school and American graduate school programs was both the first of its kind in Japan and groundbreaking.

In one sense, it could be said that it was inevitable that we would embark on the establishment of an IT professional graduate school under the new Professional Graduate School system with staff from the Kyoto Computer Gakuen, which had made such achievements as those mentioned above, at its core. The Kyoto College of Graduate Studies for Informatics was established as Japan’s first IT professional graduate school in April 2004, the first year of the new education system in Japan, with the endorsement and cooperation of Masao Horiha, founder and current chief adviser of Horiha, Ltd. and numerous other persons involved in the financial world, as well as many persons involved in education, including professors and researchers from the Rochester Institute of Technology and the Teachers College at Columbia University in the United States. At the time of our establishment, KCGI created a program to cultivate engineers and, in particular, CIOs specializing in web business (e-business) based on the revised edition of the ACM (Association for Computing Machinery) IS (Information Systems) master’s program curriculum with information technology education serving as a foundation while also taking into consideration international business education. We also set forth the following as our founding philosophy: “Cultivate specialists in applied information technology who possess creativity and high level practical abilities which will meet the needs of society, support the present age, and lead us into the next generation.” KCGI advocates the realization of a high level information society and the recovery of the economy in Japan through the provision of high level IT professionals who possess extensive knowledge and high level skills beyond what is conventional and who are also internationally minded in order to meet the need for high level diversification in human resources in our IT society, as well as the adaptation to developments in information and related technologies and the provision of education on theory and practical technology in academic fields related to science, technology, and business management in the training of high level professionals.

It is to this extent that major programs concerning web business (e-business) in Japan at the undergraduate and graduate school level were virtually non-existent and the subject was treated as merely a sub-field in traditional major programs such as business management, industrial engineering technology, and majors related to information. In other words, the subject was in fact merely researched and taught as part of a systematic and comprehensive major or as part of a major field. What distinguishes KCGI is that we are not a “vertically divided single field” computer science graduate school, nor are we an informatics and mathematics graduate school; schools that would be found in many university engineering departments in Japan. Although we may share many similarities with the above, we aim to be a world-class professional school as a different genre of IT professional graduate school in the broader sense of the idea and with a focus also on the cultivation of leadership abilities. In addition to curriculum design and an advisory teacher system based on a pedagogical point of view, KCGI also aims to have a well-rounded education system widely integrating elements and policies heretofore virtually unseen in Japanese universities such as learner-oriented instruction design, an education system with an open and horizontal division of labor, and periodic evaluations of learning outcomes.

Further, KCGI is also focused on the cultivation of international leaders equipped with IT and management skills who are able to exhibit their true potential throughout Asia, an area experiencing increasing globalization. At KCGI, we have aimed to be the number one IT professional school in Asia since our establishment and we actively accept students from around the world and particular Asia.

In addition, against the backdrop of the recent international acclaim for Japanese content such as anime, the importance of the content industry is increasing. KCGI is thus exploring the even greater possibilities posed by the internet than that which has already been achieved in the relationship between the content industry and IT. We are also focusing on the development of actual content and research into new content business models and are creating relevant courses in relation to the same.

Already IT is something which cannot be done without in our daily lives and business activities and significant social needs lie at the base of the wide range of related fields. Graduates of KCGI, furnished with practical skills and communication abilities and possession of a global perspective, are active in numerous fields.

In April 2012, KCGI established a satellite campus in Sapporo and another in Tokyo was established in October 2012. Connected to the main school in Kyoto via an e-learning system, this makes it possible to receive cutting-edge IT professional education while studying at either satellite campus. Courses are taken in real time; in addition to being able to ask questions of professors directly via camera, these courses are recorded and it is also possible to view courses stored on our servers from home. It is, so to speak, possible to go beyond the boundaries of time and space and receive a high level professional education anywhere, anytime. In addition, KCGI is also endowed with a solid network connecting it with higher education institutions around the world, including in the United States, China, and South Korea. Through our repeated experiences in partnering and networking with these institutions, KCGI is further increasing its interaction with other countries and is actively developing education projects towards this end.

KCGI is celebrating its 15th anniversary since its establishment. Amidst the hectic changes of the day, we are steadily advancing and pushing forward with the training of high level IT professionals based on our founding philosophy and our established mission and purpose. I eagerly await the entrance of ambitious students such as yourself.
The Industrial Revolution, which occurred from the latter half of the 18th century through the 19th, began thanks to the creation of a new type of power known as the steam engine. The increase in productivity was further accelerated by the use of electricity and petroleum, until, by the latter half of the 20th century, the productive capacity of humanity far exceeded the amount needed. The result, termed the conversion from quantity to quality, led to the obsolescence of mass production methods at the time and a transition to the age of large variety, small volume production. Amidst these stormy seas of change, the industrial composition of the world is undergoing a significant transformation, giving birth to a new social order. This same phenomenon is also occurring in the world of information. The speed of it, however, is far higher. Although just 70 some years have elapsed since the production of the first computers, their progress has been explosive, to the point where both their operational speed and memory capacity are inconceivable. The ability of computers to solve the various differential equations which describe atmospheric changes faster than actual weather phenomena occurs in the decisive factor in making numerical weather forecasting possible. Voice analysis and recognition has become fast enough to handle the speed of human speech. Barriers to memory capacity are virtually non-existent and it is now possible to store every book in human speech. Barriers to memory capacity are virtually non-existent and it is now possible to store every bit of data taken in by a human sense via fiber optic cable. ICT as infrastructure is globalizing finance and business and continues to exert a significant influence even on the nature of countries and societies via the direct connection of people around the world. Needless to say, not all of these changes are necessarily in a positive direction. In addition, negative aspects such as computer crime cannot be ignored. In that sense, we are truly in the very midst of this conversion, and one could go so far as to say that we are coming to a turning point in the future of humanity.

KCG, the parent organization of KCGI was established in 1963 when computers were in their infancy. KCG grew with the development of computers as Japan’s first computer education institution and has sent forth many promising graduates into the world. By inheriting this tradition and history of results, KCGI was conceived as Japan’s first professional graduate school, announcing its establishment in November 2003 and welcoming its first students in April of 2004. At this turning point, we can now say we have truly begun our journey. KCGI, while continuing to devote itself to the further study of ICT, fully understands the influence this will have on society and seeks to cultivate human resources who guide it in the right direction. If you have the will, doors will open for you regardless of age, personal history, nationality, or whether you come from the humanities or the sciences. We welcome with open arms not only those who have just finished their undergraduate studies but also working adults looking to advance their careers who are already flourishing in the real world and students around the world interested in studying in Japan.
Features of KCGI

Truly master practical skills useful in society.

- Curriculum design adapted to the needs of industry and the rapid changes in IT (ICT)
  At KCGI, curriculums, course designs, and instructional designs are created with advice from specialists both inside and outside the school in order to promote education adapted to the needs of industry. In addition, world-class, cutting-edge IT education curriculums are imported and jointly developed based on our collaboration with the Rochester Institute of Technology in the United States in order to adapt to the rapid changes in IT (ICT).

- Thoroughly practice-based curriculum composition
  In order to cultivate human resources who possess both IT (ICT) and management skills, KCGI takes into consideration students’ ability to take many classes not only in the field of IT but also subjects related to business such as management and economics. In their final year, students at KCGI plan and implement a project in place of a master’s thesis, acquiring the high level skills needed to establish their careers.

- Adoption of effective education methods through the use of both e-learning and in-person classes
  With powerful support from professors from Columbia University in the United States, KCGI aims to realize world-class, high-level IT education. Stressing flexibility even in the way classes are taught and taken, courses are practical and varied in composition, including case studies, fieldwork, group work, and discussions. In addition, KCGI has established a full-fledged e-learning studio and implements effective education through the use of both e-learning and in-person classes.

Courses are available not only in Japanese but also in English.

Our College hosts exchange students from many different countries, and we offer numerous courses in English, making for an easy learning experience for exchange students. We welcome many top-rated facilities from overseas, and they form the basis for the expansion of IT business to the global stage. You may even meet someone from overseas here that could be a potential business partner in the future.

Study a good balance of IT (ICT) and management.

- Cultivating professionals in the fields of both information and management
  Talented individuals possessing both IT (ICT) skills, with web technology as a mainstay, and management skills, such as management strategy creation, are in demand in the modern business scene. KCGI cultivates professionals who understand such specialized fields as information and management. Curriculums are organized so that students can study a good balance of information and management courses as is appropriate to their individual backgrounds.

Take on a global perspective and open up your life.

- Courses conducted by leaders in the field of IT from around the world
  IT business is a field developing globally and across national boundaries. KCGI invites top class professors from regions around the world including North America and Asia to help students acquire an international perspective. KCGI concludes scholarly exchange agreements and business collaborations with universities around the world, including the Rochester Institute of Technology in the United States and the Graduate School of Information Security at Korea University, which is one of the top programs in the world in the field of information security. KCGI is also focused on the development of international relations, including engaging in joint research and international symposiums.

- Taking classes appropriate to the knowledge you bring to KCGI
  Students of all skill levels in IT study at KCGI, from humanities graduates with virtually no knowledge of computers to working adults flourishing as SEs in the IT industry. KCGI offers the optimum course patterns for each individual student based on their existing skills in IT and future goals. This makes it possible even for students without a prior background in the field to comfortably reach their goals in stages. Students who already possess basic knowledge of the field can begin their studies with more specialized courses, making it possible to effectively grow and extend their skills.

Haven your studies to flourish in society.

- Cultivate an international perspective through interaction with students from around the world
  Since our establishment, many students from around the world have entered and studied at KCGI in the pursuit of a world-class, cutting-edge IT education. By learning together with students assembled from countries across the globe, you will cultivate diverse viewpoints and create the foundation for globally developing and expanding the IT businesses of the future. Many foreign students seek to start their own companies in their home countries after graduation and our professors, with business experience in nations around the world, provide guidance suited to the conditions of each country.

Take courses based on practical experience.

In order to cultivate professionals, KCGI appoints many practically experienced faculty such as instructors with experience working as CIOs at major companies. Our teaching staff cultivate students’ practical skills through courses based on their actual experience. Students acquire comprehensive professional skills while increasing their understanding of the latest theories and technologies directly connected to practical usage.

Change career paths and flourish in the field of IT.

- KCGI accepts students from a wide range of fields
  KCGI does not set limits on what fields applicants majored in, accepting students from a wide range of fields in the humanities and sciences. KCGI supports students from all backgrounds and has prepared elective courses appropriate to the existing knowledge, skills, and needs of students. In addition, KCGI also has a system for working adults to continue studying while employed. KCGI offers the opportunity to change career paths, something which has traditionally not been properly provided by graduate schools in Japan.

- Making your ideal job a reality with thorough individual guidance
  KCGI makes it possible for students to find employment after graduation. Professors provide guidance, harnessing their experience and connections in industry and providing recommendations to companies through individual interviews with students to help them achieve their ideal job. In addition, KCGI provides a wide variety of support for students looking to start their own company, including providing the knowhow needed to establish, manage and operate a business.

- Cultivation of a business network between graduates
  Each year KCGI produces numerous and highly diverse graduates focused on the keyword of IT, and KCGI also concentrates on cultivating a business network composed of these graduates. KCGI establishes numerous opportunities for students to engage in group work during students’ tenure with the goal that students will harness each other’s unique skills after graduation and cooperate in business development and expansion.
Environment

A practical education environment including world-standard business systems

Educational SAP System
- Cultivating truly practical talent via SAP’s ERP package

IT education at traditional universities and graduate schools often lacks the perspective of “how can this be utilized in business?” In particular, until now there was no environment for pursuing education which could be utilized in real world IT concerned with actual business activities such as business and departmental integration. KCGI uses the ERP (Enterprise Resource Planning) software from SAP AG of Germany, one of the world’s leading ERP package vendors, for education, and provides a practical study and research environment in order to cultivate high level practical human resources in the field of IT. This same ERP system is used by over 97,000 major companies around the world and boasts over a 50% market share in Japan alone. Conventionally this system has been used by other academic institutions for providing education on business administration and information management. One of the features of KCGI, however, is that only KCGI, the first Japanese IT professional graduate school, uses this software in Japan to provide true ERP professional education which includes system development.

Support System

Courses available through Next-Generation Education System e-Learning
Linking Sapporo / Tokyo with Kyoto, you can study anytime, anywhere

KCGI provides real time courses linking Sapporo and Tokyo with Kyoto using the latest e-learning system (synchronized e-learning). In addition, students can also study anytime, anywhere over the internet with study content stored on KING-LMS® (asynchronous e-learning).

*KING-LMS (KCG Information Network Galaxy-Learning Management System): KCGI’s proprietary study management and support system which makes it possible to freely study content as desired.

- Busy working adults can also study easily

In recent years the number of working adults seeking to improve their skills and change careers by studying at graduate schools while continuing to work is on the rise. KCGI provides an education support system for students such as these so they may balance work and study and open up a path towards becoming web business professionals.

Active Fields

The introduction of IT (ICT) which is of a high level compared to traditional IT in accordance with the increasing sophistication of IT (particularly the diffusion of web business technology) is now a challenge faced by the world of industry. Specifically, there is a movement towards utilizing IT (ICT) not merely as a means of improving business but rather in the creation of high level business strategies. This means the introduction of IT at the top levels of business management; the human resources involved in this will require both high level knowledge and skills and at the same time high level management sense. KCGI has created curriculums designed to cultivate the high level IT talent required by industry. Graduates of KCGI are expected to work in IT-related occupations such as the following.

CIO (Chief Information Officer)

As the implementation of IT in companies grows and IT increasingly comes to support the basis of business management, companies are increasingly seeking CIOs who will draft IT strategies and play a part in company management. CIOs are high level professionals who take part in the design of company management strategies, develop information strategies aimed at creating environments which enable the realization of said management strategies, and turn the diverse array of management knowledge possessed by the company into effective information systems.

Project Manager

As a leader of projects promoting the introduction of IT, the role of the project manager is important. Project managers are high level professionals who consider the effective utilization of internal management resources, possess the ability to comprehensively manage and optimize the same, and introduce the latest information technology as appropriate. As such, project managers must possess extensive knowledge about both IT and business management. In addition, as project managers often participate in cross-department projects involving numerous people of different positions, they also require high level communication and leadership abilities.

Senior SE, Web System Architect

Senior SEs are engineers who assist project managers and also manage their own projects. Senior SEs must have a deep understanding not only of technology but also management factors such as costs and work flow. Web system architects follow the instructions of project managers and senior SEs to engage in the actual development of systems, harnessing the latest IT skills.

Senior SE, Web System Architect

Web Marketing Professional

Web marketing professionals are high level professionals who execute e-business and possess the web skills to create e-business sites, the ability to draft strategies for providing services over the internet, and the marketing techniques needed to understand consumers’ internet behavior. Web marketing professionals must have a wealth of knowledge concerning business transactions as well as advanced knowledge and skills concerning networks such as distribution systems and web security.

System Integration Consultant

Due to a lack of in-house IT talent, the demand for external consultants in introducing IT in Japanese companies is growing. System integration consultants are high level professionals who provide consulting concerning business system planning in accordance with the management strategies of the client company and who possess the skills needed to efficiently implement links between companies which will help them to succeed in today’s fiercely competitive international business environment. As system integration consultants must understand and respond appropriately to client needs, they must have strong IT, management, and communication skills.

System Architect

System architects are high level professionals who analyze the issues involved in the IT strategy drafts of companies, create frameworks for finding solutions, and design new system architecture which integrates increasingly complex existing systems. System architects play a central role connecting the strategy drafts of companies with actual system development. As such, they require not only IT skills but also extensive knowledge of business, administration, and management.

Information Security Consultant

Information networks are indispensable infrastructure to making e-commerce and an IT-driven reality. However, the security risks to these networks are also continuing to expand. An Information Security Consultant offers advice and support to customers in formulating information security policies and in securing information assets. To understand the conditions the customer faces, and to respond appropriately to these, an Information Security Consultant requires management and communication abilities.

Content Production Manager

Content Production Managers oversee project teams in the production of media contents, such as movies, animation and game software. Firstly, a proposal is drafted, then production negotiations are initiated with the company with the cooperation of the team, and a concrete budget is secured. Also, Content Production Managers must plan how they can recover this funding using the finished product, and execute this plan. This requires the capacity to analyze past project performance and current market conditions, and the leadership to organize a team to execute your plan.

Web Marketing Professional

Web marketing professionals are high level professionals who execute e-business and possess the web skills to create e-business sites, the ability to draft strategies for providing services over the internet, and the marketing techniques needed to understand consumers’ internet behavior. Web marketing professionals must have a wealth of knowledge concerning business transactions as well as advanced knowledge and skills concerning networks such as distribution systems and web security.

Content Production Consultant

Content Production Managers oversee project teams in the production of media contents, such as movies, animation and game software. Firstly, a proposal is drafted, then production negotiations are initiated with the company with the cooperation of the team, and a concrete budget is secured. Also, Content Production Managers must plan how they can recover this funding using the finished product, and execute this plan. This requires the capacity to analyze past project performance and current market conditions, and the leadership to organize a team to execute your plan.

System Integration Consultant

Due to a lack of in-house IT talent, the demand for external consultants in introducing IT in Japanese companies is growing. System integration consultants are high level professionals who provide consulting concerning business system planning in accordance with the management strategies of the client company and who possess the skills needed to efficiently implement links between companies which will help them to succeed in today’s fiercely competitive international business environment. As system integration consultants must understand and respond appropriately to client needs, they must have strong IT, management, and communication skills.

System Architect

System architects are high level professionals who analyze the issues involved in the IT strategy drafts of companies, create frameworks for finding solutions, and design new system architecture which integrates increasingly complex existing systems. System architects play a central role connecting the strategy drafts of companies with actual system development. As such, they require not only IT skills but also extensive knowledge of business, administration, and management.

Information Security Consultant

Information networks are indispensable infrastructure to making e-commerce and an IT-driven reality. However, the security risks to these networks are also continuing to expand. An Information Security Consultant offers advice and support to customers in formulating information security policies and in securing information assets. To understand the conditions the customer faces, and to respond appropriately to these, an Information Security Consultant requires management and communication abilities.

Web Marketing Professional

Web marketing professionals are high level professionals who execute e-business and possess the web skills to create e-business sites, the ability to draft strategies for providing services over the internet, and the marketing techniques needed to understand consumers’ internet behavior. Web marketing professionals must have a wealth of knowledge concerning business transactions as well as advanced knowledge and skills concerning networks such as distribution systems and web security.
Educational Goals

Listed below are the educational goals of the School’s Web Business Technology Major, devised to achieve the School’s mission and goals in the education of students.

- Improving Development/Application Capacity
  Students learn to actually apply the systems and contents they have planned and designed through the installation of software and the providing of solutions to users. Students also deepen their practical knowledge of the various tools and regulations required for this development and application.

- Fostering the Mentality and Ethics of a Professional
  A high degree of professional mentality and ethics are cultivated in students to responsibly take charge of the business process and work to continuously improve themselves. In conjunction with this, students also learn practical leadership and organizational management methods.

Curriculum Policy

In accord with its mission and objectives, KCGI implements curricula that are geared toward developing businesspeople capable of succeeding in online business through a combination of advanced professional skills in IT and management.

1. Curricula
   The subjects students are expected to study consist of three major categories: a concentrated curriculum, organized into a systematic group to enable students to deepen their knowledge of a particular professional field; an industrial curriculum, which focuses on the study of specialized and related knowledge regarding a specific industry as well as practical application of technologies including use of case studies; and a common elective curriculum that touches on interpersonal skills, ethics and trends in advanced technology.

2. Establishment of Course Registration Models and Method
   According to their learning objectives and preferences, students choose either a Concentration or General IT Studies. A Concentration is a set of courses that emphasizes broad and deep expertise, from basic foundational knowledge to application and practice in a specific IT related field, within a wide range of knowledge. General IT Studies allow students to select courses that correspond to a wide variety of student needs and their personal goals of study and research. To expand their learning into professional application, the curriculum also offers Industry courses that emphasize practical application of technology in a wide range of industrial fields. Students apply their knowledge to specific problems as well as create designs and plans in a variety of industries. Industry courses are meant to complement the students’ main Concentration courses.

3. Master Project
   In tandem with their studies in other courses, students pursue various themes under the guidance of their instructors. The purpose of the master project is to develop students’ skills in putting their knowledge to practical application.

4. Responding to Change
   To respond to the rapid pace of development in the IT field, curricula are constantly revised and updated to align them with the competencies currently required of highly skilled IT professionals.

Integrated Programs for the Development of Applied IT Specialists

One of the founding goals of KCGI is the development and graduation of applied IT specialists. To achieve this goal, KCGI establishes integrated curricula, combining a range of study models to cater to students’ varying educational objectives with student-driven projects and activities.

- Acquiring Specialization
  As an applied IT specialist, it is unrealistic to expect to cover the entire vast range of knowledge about IT. To enable students to specialize, KCGI identifies a number of particular fields and develops curricula for those fields. This specialization enables students to acquire broad and deep knowledge about their chosen fields, ranging from its basics to applied technologies and practical skills. This study model, in which students choose a curriculum and pursue it extensively and in depth, is called the concentration study model.

- Responding to the Needs of Society
  Across the gamut of modern industries, the need for applied IT to raise efficiency, gather knowledge and otherwise solve problems is mounting steadily. KCGI is responding to these needs by organizing curricula that enable students to select a field of industry and practice IT in that field, learning through case studies and by tackling issues. This study model of selecting a curriculum and pursuing studies focused on it is called the industrial field study model.

- Demonstrating Creative and Practical Skills
  An applied IT specialist must be able to apply the knowledge they acquire in each subject to practical uses and solutions to real problems. They must be able to plan and design the series of actions to be taken on their own initiative and return the benefits of those solutions to others. To assist and encourage students in learning those abilities, KCGI includes in its curriculum master projects and independent study, in which students pursue diverse these under the guidance of an assigned instructor.

- Professional Orientation
  Applied IT specialists are expected to fulfill their roles as highly trained professionals capable of solving real problems and delivering practical solutions in actual industrial fields. To this end KCGI encourages students to apply for internships. Internships provide opportunities for hands-on experience that can raise students’ levels of technical proficiency and sharpen their problem-solving skills.

Diploma Policy

To receive a Master’s (Specialist) Degree from KCGI, the student must satisfy all three of the conditions listed below:

1. The student has completed the required terms of study
2. The student has obtained the required number of credits (units)
3. The student has completed courses according to the study methods specified in the curriculum and has acquired the basic knowledge, applied capabilities and high level of ethical consciousness expected of an advanced specialist professional
Students who pass the oral examination receive credit for a unit. They then proceed to write a master project report and present the report orally to several instructors. This presentation is a final examination for this course.

Experiences

Academic advisors. Students collate their findings at KCGI, under the guidance of an academic advisor. Students ensure that they remember what they have learned and can use it practically and effectively. At the end of their internships, students submit a participatory report and present an oral report to receive credit for a unit.

Independent study is a system in which students pursue research under their own initiative, unconstrained by the boundaries of the courses offered at KCGI, under the guidance of an academic advisor. Students collate their findings in a research report and present the report orally. Students who pass the oral examination receive credit for a unit.

KCGI offers an internship program that enables students at KCGI to obtain work experience for a set period of time at a business or organization related to their areas of study. By applying the specialized knowledge and communication skills they learned at KCGI in an actual working environment, students ensure that they remember what they have learned and can use it practically and effectively. At the end of their internships, students submit a participatory report and present an oral report to receive credit for a unit.


courses are divided into basic courses that require no particular background knowledge, courses that require some background knowledge and courses that require specialist knowledge. To enhance their levels of academic performance, students are required to take at least a certain number of applied courses as a condition of graduation.

Master projects at KCGI focus on practical applications and technologies in use in IT. The purpose of assigning these projects is to lead students in analyzing problems based on their own awareness of issues, then drafting and presenting their own solutions. In comparison with traditional university Master’s-degree projects, in which the accent is on research, KCGI master projects do not necessarily have to deliver new findings. Rather, the aim is to create opportunities for students to improve life for society or individuals in some way using existing tools, services, frameworks and so on.

In order to analyze and present solutions for issues covered in their concentrated or industrial field study programs, KCGI students working on master projects focus on using existing tools and their applications. Such tools may include physical platforms, software, services, frameworks, business models and so on.

The student pursues the Master Project on his or her own initiative, under the guidance of a Project Sponsor (instructor in charge of the Project). The steps taken in each semester are as follows.

Flow of Events in a Master Project (Overview)

3rd semester

The student attends the basic lectures (required subjects) for the Master Project and learns generally about the project composition and method of implementation. Students who plan to do a Master Project are expected to prepare and submit a research plan.

4th semester

The student reports regularly to his or her Project Sponsor regarding the progress and results of the Project. At the end of the term, the student submits the Master Project and presents his or her work in an oral presentation in front of several instructors. This presentation is a final examination for this course.

KCGI accepts students from a diverse range of backgrounds, regardless of undergraduate major. This openness is one way we fulfill our mission to society of providing challenging career opportunities to as many people as possible. As such, required courses at KCGI are those that instill the core skills for effective and rational communication expected of an advanced specialist professional, regardless of each student’s field of specialization. We also recommend courses in configuring the computer systems that are the heart of IT, as well as in the construction of websites and databases. These courses provide the foundations you need to study applied IT.

Master project (Optional between Master Project and Applied Courses)


courses are divided into basic courses that require no particular background knowledge, courses that require some background knowledge and courses that require specialist knowledge. To enhance their levels of academic performance, students are required to take at least a certain number of applied courses as a condition of graduation.

An upper limit on number of units per term is also imposed, to ensure that students’ academic plans incorporate sufficient time to study effectively.

Industry Courses

- Fintech
- Agriculture
- Marine
- Health and Medical
- Content Marketing
- Education

Supporting Elective Courses

- e-Learning Studio
- Lecture Room
- Great Hall

Mandatory Courses

- Professional Communications in the ICT Industry
- Leadership Theory
- Foundation of Master Project

Concentration Courses

- ERP
- Business Data Analytics
- IT Entrepreneurship
- Web Systems Development
- Network Administration
- IT Manga and Anime
- Tourism IT

Select one of the above specialized fields or

General IT Model

- Freely select subjects based on your objectives

Master of Science in Information Technology (Professional Degree)

- Required and Recommended Courses

KCGI accepts students from a diverse range of backgrounds, regardless of undergraduate major. This openness is one way we fulfill our mission to society of providing challenging career opportunities to as many people as possible. As such, required courses at KCGI are those that instill the core skills for effective and rational communication expected of an advanced specialist professional, regardless of each student’s field of specialization. We also recommend courses in configuring the computer systems that are the heart of IT, as well as in the construction of websites and databases. These courses provide the foundations you need to study applied IT.

- Course Selection

From each of the three curricula—concentrated, industrial field and common selection—students assemble their own personal curricula by consulting with an academic advisor and selecting courses for each term.

Courses are divided into basic courses that require no particular background knowledge, courses that require some degree of background knowledge and courses that require specialist knowledge. To enhance their levels of academic performance, students are required to take at least a certain number of applied courses as a condition of graduation. An upper limit on number of units per term is also imposed, to ensure that students’ academic plans incorporate sufficient time to study effectively.

- Independent Study

Independent study is a system in which students pursue research under their own initiative, unconstrained by the boundaries of the courses offered at KCGI, under the guidance of an academic advisor. Students collate their findings in a research report and present the report orally. Students who pass the oral examination receive credit for a unit.

- Internships

KCGI offers an internship program that enables students at KCGI to obtain work experience for a set period of time at a business or organization related to their areas of study. By applying the specialized knowledge and communication skills they learned at KCGI in an actual working environment, students ensure that they remember what they have learned and can use it practically and effectively. At the end of their internships, students submit a participatory report and present an oral report to receive credit for a unit.

- Objectives

In order to analyze and present solutions for issues covered in their concentrated or industrial field study programs, KCGI students working on master projects focus on using existing tools and their applications. Such tools may include physical platforms, software, services, frameworks, business models and so on.

Under the guidance of a project sponsor (instructor with responsibility for oversight of the project), students execute their projects with the following objectives:

- Development of a new tool, system or theory, or improvement of an existing one
- Evaluation of a tool, system or theory from a new perspective
- Development of a new implementation or application for tool, system or theory

- Methods of Implementation

The student pursues the Master Project on his or her own initiative, under the guidance of a Project Sponsor (instructor in charge of the Project). The steps taken in each semester are as follows.

Flow of Events in a Master Project (Overview)

3rd semester

The student attends the basic lectures (required subjects) for the Master Project and learns generally about the project composition and method of implementation. Students who plan to do a Master Project are expected to prepare and submit a research plan.

4th semester

The student reports regularly to his or her Project Sponsor regarding the progress and results of the Project. At the end of the term, the student submits the Master Project and presents his or her work in an oral presentation in front of several instructors. This presentation is a final examination for this course.

KCGI accepts students from a diverse range of backgrounds, regardless of undergrad

- Required and Recommended Courses

KCGI accepts students from a diverse range of backgrounds, regardless of undergraduate major. This openness is one way we fulfill our mission to society of providing challenging career opportunities to as many people as possible. As such, required courses at KCGI are those that instill the core skills for effective and rational communication expected of an advanced specialist professional, regardless of each student’s field of specialization. We also recommend courses in configuring the computer systems that are the heart of IT, as well as in the construction of websites and databases. These courses provide the foundations you need to study applied IT.

- Course Selection

From each of the three curricula—concentrated, industrial field and common selection—students assemble their own personal curricula by consulting with an academic advisor and selecting courses for each term.

Courses are divided into basic courses that require no particular background knowledge, courses that require some degree of background knowledge and courses that require specialist knowledge. To enhance their levels of academic performance, students are required to take at least a certain number of applied courses as a condition of graduation. An upper limit on number of units per term is also imposed, to ensure that students’ academic plans incorporate sufficient time to study effectively.

- Independent Study

Independent study is a system in which students pursue research under their own initiative, unconstrained by the boundaries of the courses offered at KCGI, under the guidance of an academic advisor. Students collate their findings in a research report and present the report orally. Students who pass the oral examination receive credit for a unit.

- Internships

KCGI offers an internship program that enables students at KCGI to obtain work experience for a set period of time at a business or organization related to their areas of study. By applying the specialized knowledge and communication skills they learned at KCGI in an actual working environment, students ensure that they remember what they have learned and can use it practically and effectively. At the end of their internships, students submit a participatory report and present an oral report to receive credit for a unit.

- Objectives

In order to analyze and present solutions for issues covered in their concentrated or industrial field study programs, KCGI students working on master projects focus on using existing tools and their applications. Such tools may include physical platforms, software, services, frameworks, business models and so on.

Under the guidance of a project sponsor (instructor with responsibility for oversight of the project), students execute their projects with the following objectives:

- Development of a new tool, system or theory, or improvement of an existing one
- Evaluation of a tool, system or theory from a new perspective
- Development of a new implementation or application for tool, system or theory

- Methods of Implementation

The student pursues the Master Project on his or her own initiative, under the guidance of a Project Sponsor (instructor in charge of the Project). The steps taken in each semester are as follows.

Flow of Events in a Master Project (Overview)

3rd semester

The student attends the basic lectures (required subjects) for the Master Project and learns generally about the project composition and method of implementation. Students who plan to do a Master Project are expected to prepare and submit a research plan.

4th semester

The student reports regularly to his or her Project Sponsor regarding the progress and results of the Project. At the end of the term, the student submits the Master Project and presents his or her work in an oral presentation in front of several instructors. This presentation is a final examination for this course.
Composing Your Curriculum

At KCGI, all students wishing to graduate with a Master’s Degree in IT Engineering (Specialist) must acquire the specified number of units and either pass their master project or complete one unit in an applied course as a substitute. The courses offered at KCGI are divided into three curricula: Concentrated, Industrial Field and Common Elective. Out of the wide range of subjects related to Web-based business, KCGI selects subjects that attract strong industry attention and in which demand for related knowledge and skills is high. We then group these subjects into curricula, enabling students to concentrate their studies efficiently. To free students to study in their own way, the curriculum design permits selection of courses unrelated to one’s specific field.

Concentration Models

Students select a specific, specialized field from among the vast body of IT-related knowledge and deepen their knowledge within that scope. To assist students in acquiring a specialized yet sufficiently broad base of knowledge, courses are grouped into various fields.

ERP

Students study the enterprise resource planning (ERP) systems which companies use to manage the information of people, goods and money, and to support business decision-making.

Business Data Analytics

Students learn to analyze the enterprise resource planning (ERP) systems and use their analyses to support effective decision-making.

IT Entrepreneurship

This curriculum teaches the knowledge and skills needed to succeed as an entrepreneur in the IT business, including the entrepreneurial mindset, leadership, and methods of data analysis and use.

IT Web Systems Development

Students in this curriculum learn how to plan and design websites that connect to resources such as databases and cloud services, as well as how to create web applications for the PC and smartphone.

Network Administration

Students learn methods of configuring various networks, security management, and installation and development of various classifier systems.

IT Manga and Anime

This curriculum teaches students how to use digital tools to plan and produce animated and other visual content, as well as how to incorporate such content into one’s business.

Tourism IT

This course covers applications of IT in the tourism field. Students learn how to operate tourism as a business, manage information in tours, accommodation, etc., and plan and design tourism content.

General IT Model

ICT can be applied in a wide variety of fields and in a wide range of combinations. Students advance their studies by maximizing the general purpose applicability, creating their unique curricula beyond existing concepts.

Industry Models

The industrial field curriculum enables students to study courses closely related to the practical application of specialized knowledge and techniques in particular industries. Each student’s curriculum is specialized for a particular business or industry. KCGI offers outstanding individuals on the front lines of each industry to serve as instructors. The content of this curriculum is updated as necessary to reflect the latest industrial trends.

Fintech

Fintech is IT applied in the financial field. These courses explore the core operations of banks as well as the current status of electronic money, virtual currency and other financial technologies.

Agriculture

Students learn how IT is applied in agriculture. Topics include the use of IT to control cultivation environments (as in plant factories) and the revolution in produce distribution.

Marine

This curriculum concerns the application of IT in shipbuilding and ocean-going transport.

Health and Medical

Students learn IT applications in the medical field. Topics covered include management of data in electronic medical records and diagnostic support using AI and data visualization.

Content Marketing

Students learn IT applications in media, online, video, music, and other media. Among the topics handled are digitalization of the production process, management of intellectual property rights and promotional strategies.

Education

In these courses students learn about IT applications in the education field. These include design and production of e-learning content, a wide range of communication systems, and more.

Supporting Electives

Courses in the common elective curriculum are a combination of the two basic types of courses. The first group consists of courses to build the communication, management and other fundamental skills necessary in any professional, in either the concentrated or industrial field curriculums. The second comprises case studies in the leading edge of IT and studies of related trends in technology. By including courses with a wide range of perspectives from the basics of IT business to applied studies, this curriculum provides students with a wide variety to choose from.

Communication

Students of these courses learn how to communicate logically and clearly in the IT and business fields, developing skills in conversation, self-expression and so forth.

Business Development

Students of these courses learn how to use digital tools to plan and produce animated and other visual content, as well as how to incorporate such content into one’s business.

Advanced Applications and Technological Trends in IT

Students of these courses study case studies of advanced applications of IT and detailed case studies of technological trends.

Concentration Models

In the Concentration Models, students’ aim is to acquire knowledge, both specialized and wide-ranging, related to one particular field among the wide range of IT-related fields available to choose from. KCGI provides a list of fields for which students can choose courses. The following six categories represent six fields that KCGI has identified as attracting intense industry interest and requiring IT-related knowledge and skills. Courses are selected and grouped according to students’ objectives.

ERP (Enterprise Resource Planning)

For students aiming for careers as consultants or system engineers contributing to the improvement of companies’ business processes

Enterprise Resource Planning (ERP) is an approach for comprehensive management of all of a company’s resources—people, goods, machinery, money and information—using IT. Understanding the enterprise resource planning systems (ERP systems) which can realize this approach is the first step of ERP system implementation, which can improve the company’s business process.

This concentration, students engage in practical study by using SAP ERP educational systems, including business integration, financial accounting system, sales and distribution system. Students also survey case studies of problem analysis and ERP implementation at a range of companies. In addition, students conduct research on connecting ERP with the latest enterprise infrastructure, such as in-memory databases and IoT.

Target career paths
- ERP implementation consultant
- ERP customization engineer
- ERP add-on development engineer

Business Data Analytics

For students aiming to become analysts who analyze business data and apply that analysis to corporate decision-making

Business data analysis is a business technique that is gaining increasing attention from numerous fields of industry in recent years. The main purpose of business data analysis is to provide companies with the effective decision-making they need to develop their businesses. As companies accumulate a wide range of data, data management becomes increasingly complex, confronting companies with a wide range of difficult problems. The aim of this concentration is to develop students’ understanding of ways to discover solutions to these problems. Students learn how to analyze and process data and use these analyses to solve a host of enterprise issues. Vital concepts such as strategic customer relationship management (CRM), based on understanding of marketing and statistical analytical methods; and supply chain management (SCM), used to handle business models involving logistical infrastructure and purchasing, are also studied.

Target career paths
- Analyst who performs data mining (extraction and use of information resources), market analysis, etc.
- CEO who can make decisions, such as proposing and advancing corporate strategy, based on data
- Consultant who can offer advice and guidelines on product planning
- CRM manager who constructs models for describing consumer behavior and for developing strategies and forecasts

IT Entrepreneurship

For students aiming to become entrepreneurs and managers capable of applying IT in new businesses

IT entrepreneurs launch, develop and manage their own and other IT ventures and apply their expertise to support the development of businesses in other industries. The aim of this concentration is to foster in students an entrepreneurial mindset and leadership while providing the knowledge and skills necessary to start a business in the IT field. While focusing on e-commerce and Web-based business, students study basic concepts in finance, marketing and management.

Target career paths
- Management consultant
- Enterprise engineer
- Business development producers in enterprises
- Support personnel for enterprise analysts and venture investors
Composing Your Curriculum

Web Systems Development

For students aiming to become Web application development engineers or website administrators

Web systems development as a rule includes both production of websites on corporate intranets, holding content for company-internal use, and production of websites on the internet, published for outside use. Generally, Web system developers code websites using programming and markup languages; however, content management systems (CMS) are also included in Web system development. In this concentration, students learn how to program and code Web systems and study the basics of networks.

Target career paths
- Designer/programmer of convenient and useful websites
- Producer engaged in launching new websites and supporting and improving existing ones
- Website manager supporting and improving excellence in his company’s website
- Engineer who can integrate existing web services with cloud services to build applications

Network Administration

For students who aim to become network engineers, information security specialists, etc.

Network services are a critical element of today’s information systems. Network administrators build computer networks and server systems, troubleshoot obstacles, and manage and support these networks and systems. When trouble occurs on a network, the network administrator recovers from the problem and maintains the data on the network. In this concentration, students acquire knowledge about the operation of network systems and about information security.

Target career paths
- Maintenance/operations engineer for corporate internet services
- Security manager for corporate intranets and mission-critical business systems
- Manager who builds and operates various server environments (Web, database, video, etc.)
- Consultant integrating and supporting a wide range of networks, including cloud services and IoT devices
- Engineer developing and operating client/server software for network systems

IT Manga and Anime

For students aiming to become creators and directors of anime, video and other content

Japan’s Ministry of Economy, Trade and Industry (METI) is promoting a strategy called the “Cool Japan strategy.” This strategy is a framework for the development and national and international promotion of Japanese culture, content industries and creative industries that are recognized worldwide, such as manga (a comic-book genre) and anime (Japanese-style animated features). At KCGI we take great interest in the Cool Japan strategy. We provide curricula focused on deploying manga and anime in Web businesses. For example, students can learn to develop new business models based on research on the business models of existing content and creative industries. They can also experience a wide range of situations encountered in the creative industries, such as anime planning and production, and find practical solutions for each problem they face. Manga and animation have entered an age of large-scale joint development. Orders for projects across national border are by no means rare. In today’s content and creative industries, including the increasingly internationalizing comics and animation industries, the presence of IT has become indispensable. Today’s content producers must master not only “basic” technologies such as drawing, video editing and storyboarding software, but also a wide variety of digital tools; moreover, they must be able to devise solutions using these technologies according to each situation. In this concentration, students acquire the comprehensive skills they need to create content and apply a creative spirit to work and life themselves.

Target career paths
- Producer who comprehensively handles planning, production and promotion of cartoon and animation content
- Content creator skilled in the use of both digital and analog production tools
- Director who can use video composition and effects with the right impact for the purpose of each production
- Marketing director who can plan content in view of trends in the cartoon and animation markets, in education, entertainment and so on

Tourism IT

For students aiming to become engineers and managers who can propose plans and systems for the tourism business

The Japanese government’s tourism promotion plan has had profound effects in recent years. The number of foreign visitors to Japan is rising rapidly, having reached an all-time high of 31.19 million visitors in 2018 (source: survey by the Japan National Tourism Organization). Each of the cities in which KCGI has a campus—Kyoto, Tokyo and Sapporo—is highly popular with tourists, creating an atmosphere that constantly reminds one of the needs and issues involved in tourist services. This industrial field, which is particularly geared to exchange students, leverages these advantages to explore new tourism services and business models that use IT. Students seek solutions to real issues such as providing tourism information in multiple languages and media; digitalizing and analyzing tourist activity records; and forecasting tourist activities.

Target career paths
- Engineer engaged in planning of tourism systems, system development and use of Big Data
- Manager possessing the skills to make tourism service management more efficient using IT

Milan’s most prestigious school of tourism education

The International University of Languages and Media (IULM), located in historic Milan, is Italy’s most prestigious school of tourism education and a partner of KCGI. Founded in 1968, IULM consists of three faculties—Tourism, Fine Arts, and Language and Communication—and has a student body of some 6,300 undergraduate and graduate students.

General IT Model

Students aim to acquire a wide range of knowledge, choosing freely from a wide variety of genres
Industry Models

The “industrial fields” in the industrial fields curricula refers to specific industries and business types that require specialist knowledge aimed at putting IT to practical use. KCGI has focused on the seven industries and business types listed below as those in which IT can be expected to play a vital role in solving a range of issues. Course options are selected and grouped with a view to developing people who can play an active and dynamic role in each respective industry.

Fintech

For students aiming to become system engineers or planners capable of planning and proposing a wide variety of financial IT services

Fintech is an umbrella term for new financial IT services such as electronic settlements and virtual currencies. Today fintech is one of the most closely watched sectors on the business landscape. In this industrial field, students learn about the accounting and financial arrangements that form the background to financial IT services, while also studying the state of fintech system design. Using this knowledge as an entry point, students learn to combine a range of IT skills, such as Web and smartphone application development and data collection and analysis, to play an active role in fintech.

Target career paths

- System engineer or planner, backed by financial and accounting literacy and basic knowledge of Web business
- Data analyst who collects and analyzes customers’ personal and financial information
- Application engineer applying new technologies such as virtual currencies and financial APIs

Agriculture

For students aiming to become consultants and analysts supporting cultivation management and distribution in agriculture through IT

As vegetable factories and agricultural-support cloud services attest, IT can be applied to solve problems in Japanese agriculture that have proliferated in recent years, such as shortages of farm successors and declining competitiveness against imports. In this industrial field, we introduce a wide range of current case studies on the intersection of agriculture with IT; background information on the frameworks by which produce is distributed in agriculture through IT, and insights into the range of frameworks by which produce is distributed in agriculture through IT.

Target career paths

- Data analyst who collects and analyzes data on producer behavior and agricultural product quality
- Developer of e-learning materials to preserve the expertise of producers in textbook form and train successors
- System engineer or consultant supporting direct connections between producers and consumers (CRM)

Marine

For students aiming to become consultants and system engineers supporting IT in the marine industry, such as in resource management or ship navigation

The development of the marine and aquaculture industries depends on the use of IT to enhance navigational safety and make fishing efficient and sustainable. Today the industry is searching for new IT-based solutions, such as marine resources with traceability features using satellite tracking and systems for collecting environmental data. Meanwhile, the marine industry is under pressure to reduce energy consumption and improve safety in navigation, reduce greenhouse-gas emissions, prevent marine pollution and use natural energy from the sea. In this industrial field, KCGI trains the future leaders of marine IT.

Target career paths

- System engineer who can construct and operate a wide variety of IT systems to support navigational safety
- Consultant who plans and develops e-learning materials, drawing on the expertise of fishermen and aquaculture workers to train the next generation
- Manager who can analyze and manage logistics in aquaculture from production through distribution and sales

Health and Medical

For students aiming to become data scientists and system engineers who are experts in the management and beneficial use of medical information

The implementation of IT in the medical field is advancing at a galloping pace, embracing medical clerical systems, ordering systems, electronic medical record systems, image diagnosis and much more. Treatment data formerly used to treat one patient at a time, medical equipment data and so on are being gathered and analyzed as Big Data, for use in preventing infectious diseases and optimizing treatment plans. Analysis of words and phrases related to medical treatment on the internet is playing a role in the forecasting and prevention of infectious diseases. In these and other ways, the use of IT in medicine is expanding, creating high demand in the medical field for professionals who can apply advanced IT to a host of problems.

Target career paths

- System engineer capable of developing, configuring and operating a wide range of IT systems in the medical field, including systems for electronic medical records and remote medicine
- Data assistant having the expertise to collect, analyze and visualize medical and medical-equipment data to support physicians’ diagnoses
- Engineer who can manage information networks for hospitals and regional medical care

Content Marketing

For students aiming to become marketing directors, marketing planners and other professionals who promote the distribution of digital content

This industrial field deepens the student’s understanding and appreciation of intellectual property, a concept at the core of any content business. These courses deal with the handling of copyrights for manga and anime; websites hosting music, images and video; and works in a wide variety of formats by the artists who create this content. Students also learn about the content business itself and research business models that use popular characters. While acquiring the necessary knowledge and techniques to manage processes from planning and production to promotion regarding comic books, animation and other content, students survey and analyze the latest trends in technology and the international market. On the basis of this research, students submit improvement proposals and business models.

Target career paths

- Marketing director who plans educational, musical and other content that incorporates trends in the comic-book and animated-cartoon markets
- Planner who develops marketing strategy in consideration of the legal framework surrounding intellectual property, including copyright and other intellectual property rights

Education

For students aiming to become engineers and content creators involved in e-learning through a wide range of media and modes of expression

A wide range of IT terminals have found their way into the educational space today, including a wide variety of e-learning systems and tablets. Combining educational materials from an instructor with other media and modes of expression, to create and share new content, is now a basic educational process. Educators can create compelling and accessible educational resources incorporating not only text and pictures but also audio, video and info graphics. Activities such as organizing and presenting graphed data from one’s own studies are now routinely demanded. It is now expected, not only in education but also in a wide range of industrial fields such as agriculture and marine operations, that veteran practitioners will find ways to preserve their expertise and bequeath it to future generations. This is to be done by recording and organizing this knowledge as video or activity data and drawing from these resources to create educational materials accessible to a wide audience. In this industrial field, students learn how to combine a wide range of media and modes of expression based on an appropriate instructional design, thereby creating an effective environment for e-learning. Through this process students engage in practical study of the use and application of educational media in ways that are effective in fostering dialogue between students and instructors.

Target career paths

- Educational professional engaged in the development and operation of e-learning systems using a wide range of media and modes of expression
- Planner who develops marketing strategy in consideration of the legal framework surrounding intellectual property, including copyright and other intellectual property rights

Composing Your Curriculum

For course selection patterns in the concentrated curriculum, please refer to page 30.
### Main Credit Courses for Major in Web Business Technology

<table>
<thead>
<tr>
<th>Categories</th>
<th>Classification</th>
<th>Number of Credits</th>
<th>Practice</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP</td>
<td>Information Systems for Enterprises</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Integration and e-Business</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>International Accounting</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Financial Accounting System Development 1.2</td>
<td>3 each</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sales and Distribution System Development 1.2</td>
<td>3 each</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Production Control System Development</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material Management System Development</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human Resource Management System Development</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERP Business Applications Development</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data Science</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualitative Data Analysis and Transformation</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exploratory Data Analysis and Visualization</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Theories of Data Mining</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machine Learning and its Application</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data Analysis and Algorithms</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Topics in Database Technology</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Environment Information System</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leading Meaningfully for Sustainable Growth</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizational Behaviour</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Topics in Information Ethics</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Web Business</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intellectual Property Rights Law</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Topics in Business Administration</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Business Economic 1.2, 2 each</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical Studies for Business Management</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current Issues in IT Industry</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brand Design and Business Management</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internet Business Strategies and Marketing</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e-Commerce Methodologies</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Entrepreneurship and Business Models</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IT Business Negotiation</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical Cloud Computing</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Game Theory and Negotiating Skills</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Topics in Database Technology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Organization Theory</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Networking</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Services Development</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Web Technology</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Web Programming 1.2, 2 each</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algorithms and Data Structure</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Programming 3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Object-Oriented Programming</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Object-Oriented System Design</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Engineering</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Database Technology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Organization Theory</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Networking</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Administration</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud Networks and Virtualization</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IoT and Wireless Networks</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information Security</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Studies in Networking</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Web Technology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Services Development</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Supporting Electives

<table>
<thead>
<tr>
<th>Categories</th>
<th>Classification</th>
<th>Number of Credits</th>
<th>Practice</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fundamentals of Database Technology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Organization Theory</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Networking</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Administration</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud Networks and Virtualization</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IoT and Wireless Networks</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information Security</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Studies in Networking</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Web Technology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Services Development</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Industry Courses

<table>
<thead>
<tr>
<th>Categories</th>
<th>Classification</th>
<th>Number of Credits</th>
<th>Practice</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Animation Drawing Fundamentals A, B</td>
<td>2 each</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital Animation Creation</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business Writing and Storyboarding</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rich Media Content Development</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Visual Story Telling and Communication</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Visual Effects</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Visual Image Processing</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital Audio Production</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Topics in Audio, Video, Production and Promotion</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Database Technologies</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the Tourism Business</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourism Information Systems Design</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourism Data Analysis</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourism Destination Management</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Global Personnel Development Theory</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data Science</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Programming 1.2</td>
<td>2 each</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Programming 1.3</td>
<td>2 each</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Educational Experience

<table>
<thead>
<tr>
<th>Categories</th>
<th>Classification</th>
<th>Number of Credits</th>
<th>Practice</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information Systems for Enterprises</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Database Technology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Organization Theory</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Networking</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Administration</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud Networks and Virtualization</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IoT and Wireless Networks</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information Security</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Studies in Networking</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Web Technology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Services Development</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Industry Courses

<table>
<thead>
<tr>
<th>Categories</th>
<th>Classification</th>
<th>Number of Credits</th>
<th>Practice</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Animation Drawing Fundamentals A, B</td>
<td>2 each</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital Animation Creation</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business Writing and Storyboarding</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rich Media Content Development</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Visual Story Telling and Communication</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Visual Effects</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Visual Image Processing</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital Audio Production</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Topics in Audio, Video, Production and Promotion</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Database Technologies</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the Tourism Business</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourism Information Systems Design</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourism Data Analysis</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourism Destination Management</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Global Personnel Development Theory</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data Science</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Programming 1.2</td>
<td>2 each</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Programming 1.3</td>
<td>2 each</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Industry Courses

<table>
<thead>
<tr>
<th>Categories</th>
<th>Classification</th>
<th>Number of Credits</th>
<th>Practice</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information Systems for Enterprises</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Database Technology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Organization Theory</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Networking</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Administration</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud Networks and Virtualization</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IoT and Wireless Networks</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information Security</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Studies in Networking</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Web Technology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Services Development</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Basic subjects are marked with an asterisk “*”.
* At least 44 units are required to complete the program (including required subjects).
* To keep up with changes in technology and societal needs, subjects offered may change from one academic year or term to the next. Also, your selected subject may not be offered if at least five people do not sign up for it.

Students may select one of these subjects for their Concentration. At least 20 units from the listed subjects must be attended. Students may also select added subjects from the Industrial Subject Group.

The Industrial Subject Group is to be attended in conjunction with the Concentration. Multiple fields may be selected.

Students may select freely from the list of subjects at left.
Overview of Courses

**Concentration Courses**

- **ERP**
  - Information Systems for Enterprises
  - Production Control System Development
  - Material Management System Development
  - ERP Business Application Development
  - Sales and Distribution System Development

- **Business Data Analytics**
  - Fundamentals of Database Technology
  - Statistics
  - Data Science
  - Qualitative Data: Analysis and Transformation
  - Exploratory Data Analysis and Visualization

**Entrepreneurship**

Leading Meaningfully for Sustainable Growth

A wide range of frameworks for discovering the significance in work and enabling the sustainable growth in ethical and deep learning. Students determine the framework for real social actions and duties, and planning and assessing strategies for sustainable growth. Students learn to turn themselves and their organizations into significant actors.

Organizational Behaviour

As the culturally diverse and multinational workplace environment continues to advance, employees in an organization are expected to become multiracial and flexible. This course deepens an understanding of the behavior of organizations and their members. Students will learn how to work with the material management system, complex production orders or process orders.

Advanced Topics in Information Ethics

There is an increased amount of information on the Internet and a individual can easily commu- nicate information in our current society. Students will learn how to handle the ethical issues with data. This course introduces ethical theories for understanding the technical skills necessary for the construction and management of a web information system necessary for web business.

Intellectual Property Rights Law

Knowledge of intellectual property rights is indispensable to anyone in the field of IT. This module explains what intellectual property rights are, and provides commentary on the protection of intellectual property rights in IT by using specific examples, such as legal precedents.

Advanced Topics in Business Administration

Students will learn basic knowledge regarding business administration. They will study web-referencing basic logic that is the common language in business, and will aim to cultivate the skills necessary for employees to perform business activities on complex problems in a practical situation as a business person.

Business Economics 1, 2

Students of these modules study microeconomics in part I and macroeconomics in part II, learning the basic theory in each. In part I, students consider the supply/demand relationship and market equilibrium, market structures and market power. In part II, students learn methods of analyzing key economic values such as production, consumption and employment on the national level.

Practical Studies for Business Management

Students will consider and debate the qualities of thinking and judgment of business management using various cases regarding the management of an IT company. Main topics include the objects of management, the actors and responsibilities of management, and the exercising of leadership capacity.

**IT Entrepreneurship**

Leading Meaningfully for Sustainable Growth

A wide range of frameworks for discovering the significance in work and enabling the sustainable growth in ethical and deep learning. Students determine the framework for real social actions and duties, and planning and assessing strategies for sustainable growth. Students learn to turn themselves and their organizations into significant actors.

Organizational Behaviour

As the culturally diverse and multinational workplace environment continues to advance, employees in an organization are expected to become multiracial and flexible. This course deepens an understanding of the behavior of organizations and their members. Students will learn how to work with the material management system, complex production orders or process orders.

Advanced Topics in Information Ethics

There is an increased amount of information on the Internet and a individual can easily commu- nicate information in our current society. Students will learn how to handle the ethical issues with data. This course introduces ethical theories for understanding the technical skills necessary for the construction and management of a web information system necessary for web business.

Intellectual Property Rights Law

Knowledge of intellectual property rights is indispensable to anyone in the field of IT. This module explains what intellectual property rights are, and provides commentary on the protection of intellectual property rights in IT by using specific examples, such as legal precedents.

Advanced Topics in Business Administration

Students will learn basic knowledge regarding business administration. They will study web-referencing basic logic that is the common language in business, and will aim to cultivate the skills necessary for employees to perform business activities on complex problems in a practical situation as a business person.

Business Economics 1, 2

Students of these modules study microeconomics in part I and macroeconomics in part II, learning the basic theory in each. In part I, students consider the supply/demand relationship and market equilibrium, market structures and market power. In part II, students learn methods of analyzing key economic values such as production, consumption and employment on the national level.

Practical Studies for Business Management

Students will consider and debate the qualities of thinking and judgment of business management using various cases regarding the management of an IT company. Main topics include the objects of management, the actors and responsibilities of management, and the exercising of leadership capacity.

**Web Systems Development**

Fundamentals of Database Technology

Students will learn the basics of databases, as well as their use in various corporate operations, and will learn about techniques of data definitions and data control.

Advanced Topics in Database Technology

Students will learn various techniques—from basic database theory to actual database use—required to construct a high-quality, high-performance database system. They will also learn about workable techniques to improve performance, such as indexing, clustering, and use of RDBMS.

Computer Organization Theory

Students will acquire the basic knowledge required in order to construct and manage information systems and networks, such as computer software and hardware, as well as system software and computer systems, which is the foundation of web system development.

Fundamentals of Networking

Students acquire the basic knowledge required to understand the basic technologies of networking and the TCP/IP protocol used in the Internet. They will also learn about the basic knowledge of network technologies.

Web Services Development

Students will acquire the latest advanced web programming techniques so that they may gain knowledge and the technology involved in next-generation software systems and web services.

**Current Issues in IT Industry**

Students will grasp the real world of IT industry while also understanding the changes in IT usage through case studies. Students will learn about advanced techniques on how to perform a corporate internal environment as a group of people.

**Brand Design and Business Management**

After getting a grasp of brand design and business management, students study strategies for handling the business of research and development, brand design and management. Cases include from small business corporate brands are researched, as well as corporate strategies for managing business incubation.

**Internet Business Strategies and Marketing**

One must understand consumer behavior on the Internet to manage an Internet business. Through considering case examples of the applications of e-marketing in various fields and real-world models, students will think about e-marketing methods using new Internet business strategies.

**e-Commerce Methodologies**

Students will understand the mechanisms, models, technological points of caution, and the social significance of e-commerce on the Internet, and will learn the techniques required for these, as well as construction strategies, design techniques, applications, and management techniques of websites.

**Entrepreneurship and Business Models**

Students will learn the process involved from making new ideas into a reality and starting up new IT businesses, and will acquire knowledge on the development, planning, marketing, and content necessary for such a startup. They will also learn the project management involved in the preparations for this.

**IT Business Negotiation**

Negotiation is a necessary and crucial component of business. In this module, we will cover negotiation case studies specific to IT business, and students will learn negotiation techniques in IT business through role play, beginning with the basics.

**Practical Cloud Computing**

Students are introduced to various solutions that are currently available with cloud computing. Students learn the fundamental concepts of cloud computing and its impact on organizations, and from a perspective in optimization of strategy, planning and social media.

**Game Theory and Negotiating Skills**

This course is an overview of the main topics in game theory as well as negotiating strategy. Students will learn how to use game theory concepts for effective conflict, arguing and resolution, as well as methods for applying these forms in other fields. Both cooperative and non-cooperative game approaches are explored.

**Introduction to Web Technology**

Students will learn the concepts of client-server architecture and multi-tier architecture, and the basics of hardware, system software and middleware. Students will learn about telecommunication technology, web server management and web programming.

**Web Programming 1, 2**

In 1, students learn how to use the latest programming languages, HTML5 and CSS 3, to design Web pages and create simple animations. In 2, students gain comprehensive skills in programming dynamic Web pages using JavaScript.

**Algorithms and Data Structure**

Students come to understand the algorithms behind the algorithms used to process the information and the concepts behind the data structures used. They will learn how to apply these concepts through the development of their own programs. The C programming language is used in practice sessions.

**Web Programming 3**

This module teaches students how to create a dynamic website using PHP, currently the most widely used language for web programming. Students will design and implement advanced applications linked to JavaScript and databases (SQL), among others.

**Object-Oriented Programming**

Using Java, the most commonly used object-oriented programming language, students learn through practice how concepts specific to object-oriented programming, such as encapsulation, inheritance and polymorphism, are incorporated into program code. The course also teaches methods on object-oriented implementation of database and Web service systems using Java.
Object-Oriented System Design
Students will acquire software development and programming technical skills for developing web applications. They will understand the object-oriented paradigm, learn the skills required to develop systems analyses and design, and aim to develop an efficient, high-quality system.

Network Administration
Students will learn the basics of databases, as well as how to use in various corporate operations, and will learn about techniques of data definitions and data control.

Fundamentals of Database Technology
Students will acquire the basic knowledge required to construct and manage information systems, web business technology and the hardware and software of computer systems, which is the foundation of web system development.

Computer Organization Theory
Students will acquire the basic knowledge of networks required to configure and make use of Web-based systems. Information and technology also serve as the basis of the era of network architecture and the TCP/IP layer are explored. Students acquire a basic knowledge of information networks.

Fundamentals of Networking
Students acquire the basis of knowledge required to configure and make use of Web-based systems. Information and technology also serve as the basis of the era of network architecture and the TCP/IP layer are explored. Students acquire a basic knowledge of information networks.

System Administration
Students learn the basics about address and user allocation, various server protocols and other information necessary when constructing in-house LANs, intranets and other networks used to manage and operate companies. In addition, students practice operating actual network servers, familiarizing themselves with various settings and operations.

Cloud Networks and Virtualization
Students will acquire the latest advanced web programming techniques so that they may gain knowledge of mobiles and the technology involved in next-generation software systems and web services.

IT and Wireless Networks
Using real case studies, this course examines the Internet of Things (IoT), the paradigm and features of mobile, and the Internet of Things (IoT)-driven society, and design and implement a scenario as one design drawing. The course also discusses recent technological trends in IoT and touches on issues such as reliability and security.

Information Security
Students will acquire the basic knowledge to construct a security system; an essential factor in next-generation information systems. Students will understand and analyze the reality of internet threats, such as login activity and computer viruses, and learn the techniques and skills to counter those threats, while considering the strengths and limits of that safety.

Advanced Studies in Networking
This class deals with the construction principles and features of information communication networks such as the internet and provides an understanding of the concept of the TCP/IP protocol stack. Network technologies, such as wired and wireless LAN, WAN and MAN, are control technologies, such as addressing control, flow control and congestion control, and quality of service (QoS) for various environments are explained in this course.

Introduction to Web Technology
This course introduces the principles of special visual effects used in video, with real-world examples. During the stage of turning the recorded video into the final product, students learn through practical software (such as Adobe After Effects) how to create an effective presentation format, forms to create drawings for animation.

Web Services Development
Students will learn the concepts of client/server architecture and multi-tier architecture, and acquire the basics of hardware, system software and middleware. Additionally, students will learn about telecommunication technology, web server management and security.

Visual Story Telling and Communication
The basic skills of creating animated videos with a variety of media and software are acquired in this course. The course also fosters skills in gathering and analyzing information and in designing an animation as a means to express ideas.

Object-Oriented Programming
Students will study development process, design, implementation, testing and maintenance of software systems. They will learn to design an object-oriented system, and learn the object-oriented methodologies and principles.

Software Engineering
Students will study software design and analysis, software reliability and software testing. They will learn various methodologies, tools and techniques for software development, and study the object-oriented methodologies and principles.

IT and Anime
Animations create a host of memorable characters and backgrounds by distorting and exaggerating their features, yet each of these elements is inspired by the world that people use every day. This course teaches the basics of developing special effects using various software and visual technique.

Digital Animation Creation
Digital assets, such as visual effects, are used to create a reality that is not possible with traditional media. This course addresses the development of digital content for various industries and applications.

Scenario Writing and Storyboarding
There are various applicable fields in animation, such as contents that require emotions and relationships to websites. Students will consider from various angles a storyboard and scenario as one design drawing.

Animation Drawing Fundamentals A/B
Animation drawings create a memorable character and background by distorting and exaggerating their features, yet each of these elements is inspired by the world that people use every day. This course teaches the basics of developing special effects using various software and visual techniques.

Rich Media Content Development
Students will learn to develop and manage content, such as websites and online communities, including content creation, distribution and management, with an emphasis on user-generated content.

Money and Banking
In this course, students gain an overview of the basic role and functions of financial institutions, such as banks, savings institutions and credit unions. Students will also learn about the financial management of businesses and organizations.

Tourism Data Analysis
Students in this course learn the basic theory and skills to analyze and evaluate tourism data. Using actual tourism data, students learn basic theory and skills to analyze tourism data, including data collection and preprocessing, clustering and classification, forecasting and time-series analysis.

Tourism Destination Management
From the perspective of tourism attraction management, this course teaches the tourism business attraction selection and analysis and related case studies of marketing information services. Based on the strategic objectives of the target tourist attraction, such as attracting foreign tourists and distributing groups of tourists to avoid overcrowding.

Tourism IT
Tourism Information Systems Design
A small group of students learn the basics of tourism information system design. Through case studies in handling tourism information, students learn about basic knowledge of tourism information systems in the context of planning and development and tourism and related issues. The course also examines the latest case studies in areas such as tourism network and management of travel activities, gaining knowledge at solving problems.

Tourism Business Students
Students gain a basic overview of the business and economics of tourism. Through case studies in handling tourism information, students learn to apply basic knowledge of tourism information systems in the context of planning and development and tourism and related issues. The course also examines the latest case studies in areas such as tourism network and management of travel activities, gaining knowledge at solving problems.

Tourism Information Systems Design
Participants in this course come to understand the importance of information systems in the tourism field and acquire knowledge required for tourism information system design. Students learn about the importance of the information system, learn about the tourism business model and case study and research and discussion and field/field work. These two topics apply to tourism information system design and tourism business promotion.

Tourism Business Students
Students gain a business overview of the tourism industry. As tourism continues to develop and evolve, students are introduced to the realities of the industry structure through technological development. Additionally, students will understand image use to effectively display information, as well as three-dimensional images and mixed reality technology from a human interface perspective.
Overview of Courses

Content Promotion Strategy
The world is awash in content promoting a full spectrum of products and services. What businesses need, however, are strategies for connecting that content effectively to users, for that content to permeate social web networks, social networks and other content and appraise and analyze their effects.

Music in IT
In this module, students will understand that music is content that has an integral relationship with the visual elements of technology and business according to the era. Students will learn about all historical trends and also search for future trends that will mix technology and music.

Entertainment in IT
Students will get on-site experience and comprehensive understanding of how ICT is used throughout the processes of stage work, from content preparations, to operations and live performances. Additionally, students will deepen their understanding of audio through the lectures on and the hands-on exercises with voice over techniques to put audio to video.

Fundamentals of e-Learning Systems
Students will be introduced to numerous case examples of e-learning systems, such as their usage and the measurement of educational effects. Students will learn various analytical techniques and be able to propose areas of improvement.

Instructional Design in e-Learning Business
Students will learn about the instructional design techniques required in developing e-learning systems, and they will put e-learning system design to practice using these. Additionally, students will also learn the knowledge required when planning business.

Instructional Design in e-Learning Business
Students will learn about the instructional design techniques required in developing e-learning systems, and they will put e-learning system design to practice using these. Additionally, students will also learn the knowledge required when planning business.

Supporting Electives Courses

Technical Communications Skill
As IT advances in society, more advanced and practical business Japanese- capable talent is required. Communicating information, knowledge and ideas without misunderstandings is a necessity in business. Students will acquire skills in word selection, expression, writing for business correspondence and presentation to accomplish this.

Business Presentation
Presentation skills to communicate plans and proposals to others are currently in high demand. Students will learn everything from word selection, manner of speaking, phrasing of messages, and creation of slides using images, music and specialized software, and put those to effective use in a presentation.

Logical Thinking
In this module students gain an overview and basic approach to logical thinking as it is practiced in creative and innovative businesses. Through lectures, case studies and presentations, students learn how to use various tools and articulate creativity. Students form teams to practice logical thinking to solve problems, learning skills in problem-solving, facilitation and explanation.

Media Communication
The global need for media professionals to solve a wide range of social issues through ICT-based communication is mounting steadily. Against that background, students learn how to apply the latest media communication techniques effectively and gain practical knowledge useful in problem-solving.

Mandatory Courses

Professional Communications in the ICT Industry
This course teaches students the basic skill set needed to give presentations on a wide range of IT topics to specialists and general audiences alike. Methods of surveying technical trends and related case studies and preparing documents and presentation materials in a logically constructed fashion are also studied.

Leadership Theory
Students will consider what qualities underpin the actions of a new leader with the ability to reach and educate an entire organization, as well as to grow the constant-shifting technological, social and cultural trends. Students will also focus on the analytical techniques and tools used to construct an organization, and carry out practical leadership in a group teaching and education format.

Foundation of Master Project
The master project serves as a summation of everything each student has learned. Through a series of presentations, students learn methods of constructing and writing a comprehensive plan for a project and realizing it. For example, the student can learn about ERP systems in stages.

e-Learning Courseware Development
Students in this course examine case studies of uses and leading-edge development of educational materials, for learning, training, or on-line. Students gain practical experience in virtual or on-line development environment, student management system, and implement that as learning administration. Students also learn to apply educational techniques of various educational environments to develop the suite of skills necessary to succeed in educational-material development.

Library Information Science
The library is the public facility most familiar to us in our daily lives. In recent times libraries have worked greatly, with the advent of information search systems, multi-library start searchers and other IT innovations. Topics covered include services available in Japanese libraries, information search technologies with real-world applications, and the future of libraries as a hub for lifelong learning and solution support services.

Comparative Research for International Education in Industry and Academia
Participants in this course look closely at the labor market and its trends, learn about the types of skills that will be needed in the future and examine the options available for dealing with shifting realities on the national, workplace, school and individual levels. Students obtain the knowledge required of persons responsible for advancing corporate in-service training.

Advanced Topics in Systems Design
Students will learn the theory and practical skills to analyze the complex systems found in management, business and industry. In particular, students will learn how to judge conditions effectively when using wide-ranging and complex systems in-house, using both abstract and practical models.

Advanced Topics in Systems Theory
Students will learn about the theory and practical elements to analyze complex systems as they appear in the fields of management, economy, and technology. Students will acquire methods to allow for rational judgment based on abstract and practical models particularly when circumstances arise that involve various complexities and solutions.

Production Systems Engineering
Understanding corporate activities from the flow of production information is crucial to the manufacturing industry. In this module, students will keep PDM in view as they grasp the concepts related to corporate strategy planning, such as demand forecasting, production planning, production scheduling, and distribution in manufacturing. Students will also learn about the IT technology that accompanies this.

Cutting Edge of Applied Information Technology A/B
This module will cover the latest trend in technology from theory to applicable fields in an overall manner. The module will explain the latest trends in the ever-advancing IT industry, and students will be expected to link these to the development objectives of their projects.

Foundation of Master Project
The master project serves as a summation of everything each student has learned. Through a series of presentations, students learn methods of constructing and writing a comprehensive plan for a project and realizing it. For example, the student can learn about ERP systems in stages.

Concentration Models

ERP
For a student who is studying ERP to become a consultant who optimizes business processes
This study model is for a student who aims to be an ERP consultant who introduces and optimizes corporate IT systems, or a system engineer or programmer who designs and develops add-ons for ERP packages. By studying applied courses related to SAP’s ERP packages (Financial Account System Development, for example), the student can learn about ERP systems in stages.

Business Data Analytics
For a student who wants to become an analyst who guides corporate decision-making by analyzing business data
This study model suits a student who aims to become an analyst supporting the proposal and advancement of corporate strategy by analyzing business data, leveraging methods such as data mining and statistical analysis. The student attends Fundamentals of Database Technology/Advanced Topics in Database Technology to learn methods of accumulating business data and assists Data Science, Machine Learning and its Application, etc. to study methods of deriving new knowledge from the accumulated data.

IT Entrepreneurship
For a student aiming to become an entrepreneur who applies IT in a new business
This study aims to be an entrepreneur who takes up the challenge of launching a business that strategically manages people, funds and/or information. The student learns how to propose a business plan, which is a vital part of launching an enterprise, by attending Entrepreneurship and Business Models. To learn how to manage the new company after startup, the student attends Current Issues in IT Industry. In Organizational Behaviour, the student learns how to motivate human organizations.

Course Selection Patterns in Each Study Model

The following are some concrete examples of selection of courses to study according to students’ desired professions.
Web Systems Development

For a student who is strongly focused on developing Web systems centered on HTML5

To become an engineer who develops Web apps or a manager of a website, the student can build up his development skills by attending Web Programming I-3. By attending Fundamentals of Database Technology/Advanced Topics in Database Technology, he can learn to construct the section that manages the data provided by the Web system. In addition, the student can add Object-Oriented System Design and Software Engineering to his curriculum to learn about designing processes further upstream.

Network Administration

For a student aiming for a career as a specialist in network infrastructure technology and information security

This student's ambition is to become a specialist in information networks, such as a maintenance/engineer for company internal networks and servers, or a security manager. Having already studied network systems by attending Fundamentals of Networking/Advanced Studies in Networking, he challenges himself to learn new technologies by attending courses such as Cloud Networks and Virtualization.

IT Manga and Anime

For a student who wishes to become a professional content creator in animation, video or the like.

This student aims to become a professional content creator, focusing on manga and anime. Special Topics in Anime, Planning, Production and Promotion, Scenario Writing and Storyboarding, the student learns the upstream processes of creating manga and anime, while in Rich Media Content Development and Digital Animation Creation he learns how to produce digital content using specific tools.

Tourism IT

For a student who wishes to become an advisor who can plan tourism businesses and propose related systems

Students of tourism IT aim to become specialists who understand the characteristics of the regions that serve as tourism resources and the needs of tourists and can apply ICT in the deployment of services and marketing strategies. By attending courses such as Introduction to Tourism IT and Introduction to the Tourism Business, students acquire operational knowledge and elemental skills tailored to the tourism industry. Through their studies in courses such as Tourism Data Analysis, Tourism Information Systems Design and Tourism Destination Management, students learn to use social networks as a promotional tool, provide tourism information in multiple languages and media, convert tourists' activity histories into data, and apply those data in analysis and forecasting.

General IT Study Model

Choose your study approach freely to cover a wide range of knowledge and fields of application

Students can select courses beyond an individual concentration or industrial field, assembling an original curriculum that spans a wide range of knowledge and fields of application. All courses other than the required courses are selected consultation with an academic advisor, so that students can assemble curricula that are most closely aligned with their goals. This flexibility provides an excellent means for students to aim for new applied fields in IT.

The Significance of the General IT Study Model

In a mere half-century, from the dawn of the IT and computer era in the 1960s to the present day, the IT field has advanced tremendously, transforming the shape of work and technology. In tandem with this transformation, the knowledge and skills required of students of IT and the problems they are required to address have transitioned and diversified. To cite one example, applications for smartphones have been planned and designed for applications based on different assumptions about use cases than for traditional PCs, such as connections to cameras, sensors and cloud services. The greatest opportunities for the debut of innovative technologies and solutions in IT lie beyond the bounds of current convention, where conventional concepts no longer apply.

In addition to the study models we have described in detail, KGCI offers the General IT Study Model. This study model enables students to build their own curricula, flexibly selecting courses beyond the confines of existing concentrations and industrial fields. This versatile option provides a means to anticipate the future and prepare for diversifying needs. The field of IT is sure to continue to grow and diversify across multiple fronts. It is by no means impossible for enterprising people to create new careers by opening new fields. By enabling an endless range of combinations with applications in a wide array of fields, the General IT Study Model maximizes the general applicability of IT. This study model was conceived so that students can build their own, personally tailored curricula, pursuing courses of study that transcend existing concepts.
Steps Toward Acquiring a Professional Degree

First-year students
First semester

Intensive study of basic knowledge
- School entrance ceremony/New-student orientation/Academic consultation
- Regular spring examinations
- Summer intensive classes

First-year students
Second semester

Acquisition of highly specialized knowledge
- Regular fall examinations
- Spring intensive classes
- Special lectures by renowned Japanese and foreign instructors

A rich student life
- Welcoming ceremony for new students
- Internship at an overseas partner university (guest lecturer)
- Business internship with a private company
- Concerts
- Career counseling

Second-year students
Third semester

Study of practical and more advanced subjects
Preparations for the Master Project begin
- Start of preparations for Master Project
- Regular spring examinations
- Summer intensive classes

A rich student life
- Career guidance
- Various job-search assistance classes
- November Festival

Second-year students
Fourth semester

Activities and study to enhance specialization
Completion of theme for Master Project
- Master Project final examination
- Special lectures by renowned Japanese and foreign instructors
- KCG Awards (Announcement of most outstanding projects at KCG and KCGi)
- Degree conferment ceremony

A rich student life
- On-campus presentations by private companies
- Acquisition of various qualifications
- Internship at an overseas partner university (guest lecturer)
- Concerts
- Participation in various contests

Degree completion celebrations
- Degree completion celebrations
- Summer intensive classes
- Deepen exchanges with the teachers through the Coffee Hour.
Faculty Introduction

At KCGI, there are less than 10 students per faculty member.

In order to achieve our goal of cultivating leaders who will flourish in the global IT business scene, KCGI’s faculty, assembled from around the world, is composed of world-class authorities in the fields of informatics, business administration, and pedagogy, together with practically experienced experts who have planned and executed IT strategies at major companies.

Faculty Mission

KCGI has prepared an environment where each student can study as is appropriate to his or her future aspirations with the advice of faculty members. KCGI faculty play two very important roles.

First, KCGI faculty play the role of educational resources. For students, faculty members are one of the educational resources. Students can learn the information necessary to achieve their goals from faculty members.

The second role KCGI faculty play is as study coordinators. Faculty members plan and solidify the study process in order to facilitate students’ understanding of study content. Facilitating students with various study resources is the role which faculty members execute as study coordinators.

We at KCGI believe that it is the mission of our faculty to fulfill these roles and provide maximum support so that each student may achieve his or her study goals.

Yoichi Terasita  Professor / Vice President
Bachlor of Science from Kyoto University
Doctor of Philosophy from the University of Iowa, USA
Professor emeritus at kansai Institute of Technology
Former IICA Japan International Cooperation Agency Expert to Thailand

Shigeru Eiho  Professor / Vice President
Bachelor of Engineering from Kyoto University
Doctor of Engineering from Kyoto University
Professor emeritus at DKU University
Former President of the Institute of Systems, Control and Information Engineers
Councilor of the Institute of Systems, Control and Information Engineers
Supervisor of the Japan Society of Medical Imaging Technology (JAMIT)
Member of the Institute of Electronics, Information and Communication Engineers

Shinji Tomita  Professor / Vice President
Bachelor of Engineering from Osaka University
Doctor of Engineering from Osaka University
Former President of the Institute of Systems, Control and Information Engineers
Member of the Japan Society of Medical Imaging Technology (JAMIT)
Member of the Institute of Electronics, Information and Communication Engineers

Gary Houichi. Tsuchimochi  professor / Vice President
Bachelor of Account and Master of Accounting (Australia)
Master of East Asian Studies (USA)
Professor emeritus at University of Tokyo
Former President of the Institute of Systems, Control and Information Engineers
Member of the Japan Society of Medical Imaging Technology (JAMIT)
Member of the Institute of Electronics, Information and Communication Engineers

Nguyen Ngoc Binh  Professor / Vice President
Bachlor of Economics from Hanoi University
Master of Science from University of California
Professor at the Institute of Systems, Control and Information Engineers
Chairman of Information Processing Society of Japan (IPSJ)
Member of the Institute of Electronics, Information and Communication Engineers

Masaki Nakamura  Professor
Bachelor of Economics from Osaka Gakuin University
After working at Nihon University, Ltd., he established KGIC in 1987.
He is the president-director of the company.
Chief Director of Information, Computer-related Industrial Health Insurance Union
Chairman of Inakayuki Information System Industry Association
Chairman of All Japan Information Industry Association Federation

Masayasu Morita  Professor
Bachelor of Arts from University of California
Master of Philosophy from University of California
Board Member, AIC, PRELS, Incorporated
CEO, Hitorrowa, Inc.

Isao Akiyama  Professor
Bachelor of Engineering from Waseda University
Laboratory Manager, Room 206, Nihon University Technology Research and Development Center

Hiroyuki Ito  Professor
Bachelor of Economics from Hokkaido Gakuin University
After working at Hokkaido University as a staff, he established Cogntion Media Inc. in 1995.
He is the president of the company.
He created "Hatsune Miku".

Tsuneo Imai  Professor
Bachelor of Engineering from Kyoto University
Master of Engineering from Kyoto University
Professor at the Institute of Systems, Control and Information Engineers
PhD candidate, University of South Carolina
Member of the Institute of Electronics, Information and Communication Engineers

Masaharu Imai  Professor
Bachelor of Engineering from Osaka University
Master of Engineering from Osaka University
Doctor of Engineering from Osaka University
Former President of the Institute of Systems, Control and Information Engineers
Member of the Institute of Electronics, Information and Communication Engineers

William K. Cummings  Professor
Bachelor of Arts from Johns Hopkins University, USA
Doctor of Philosophy from Harvard University, USA
Professor of International Education, George Washington University, USA

Koji Ueda  Professor
Bachelor of Engineering from Kyoto University
Master of Engineering from Kyoto University
Graduate School of Science and Engineering, University of California, USA
Member of the Institute of Systems, Control and Information Engineers

Tosio Okamoto  professor
Master of Science from Kyoto University
Doctor of Philosophy from Osaka University
Professor emeritus at University of Tokyo
Co-founder and Director of the Center for Interdisciplinary Research of the Social Sciences and Humanities (CIRSS)
Member of the Institute of Systems, Control and Information Engineers

Yoishitaka Kai  Professor
Bachelor of Economics from Aoyama Gakuin University
Master of Economics from Aoyama Gakuin University
Doctor of Commerce from Aoyama Gakuin University
Professor at the Institute of Systems, Control and Information Engineers
Member of the Institute of Electronics, Information and Communication Engineers

Hiroshi Kiyohara  Professor
Member of the Institute of Systems, Control and Information Engineers
Certified IT Professional in IT and Information Engineering
Certified IT Coordinator
Former Project Manager at Honda Techno Works, Inc.

Hiromi Kitayama  Professor
Member of the Institute of Systems, Control and Information Engineers
Certified IT Professional in IT and Information Engineering
Certified IT Coordinator
Former Project Manager at Honda Techno Works, Inc.

Akihiro Kinbara  Professor
Bachelor of Science and Master of Science from Kyoto Institute of Technology
Technical Engineer (Security) Information Security Association
Principal of Kyoto Computer Gakuin University
Chairman of Inakayuki Information System Industry Association

Cyril Koshy  Professor
Bachelor of Science from Technology India University
Bachelor of Engineering from Sathyabama University
Doctor of Philosophy from University of Sunderland
Former Head of Cybersecurity and Information Systems Security
Former Director of the Center for Cybersecurity and Information Systems Security

Masashi Kurataki  Professor
Bachelor of Business Administration and Master of Business Administration from University of California, USA
Professor at the Institute of Systems, Control and Information Engineers
Member of the Institute of Electronics, Information and Communication Engineers

Yoichi Terasita  Professor / Vice President
Bachlor of Science from Kyoto University
Doctor of Philosophy from the University of Iowa, USA
Professor emeritus at kansai Institute of Technology
Former IICA Japan International Cooperation Agency Expert to Thailand

Shigeru Eiho  Professor / Vice President
Bachelor of Engineering from Kyoto University
Doctor of Engineering from Kyoto University
Professor emeritus at DKU University
Former President of the Institute of Systems, Control and Information Engineers
Councilor of the Institute of Systems, Control and Information Engineers
Supervisor of the Japan Society of Medical Imaging Technology (JAMIT)
Member of the Institute of Electronics, Information and Communication Engineers

Shinji Tomita  Professor / Vice President
Bachelor of Engineering from Osaka University
Doctor of Engineering from Osaka University
Former President of the Institute of Systems, Control and Information Engineers
Member of the Japan Society of Medical Imaging Technology (JAMIT)
Member of the Institute of Electronics, Information and Communication Engineers

Gary Houichi. Tsuchimochi  professor / Vice President
Bachelor of Account and Master of Accounting (Australia)
Master of East Asian Studies (USA)
Professor emeritus at University of Tokyo
Former President of the Institute of Systems, Control and Information Engineers
Member of the Japan Society of Medical Imaging Technology (JAMIT)
Member of the Institute of Electronics, Information and Communication Engineers

Nguyen Ngoc Binh  Professor / Vice President
Bachlor of Economics from Hanoi University
Master of Science from University of California
Professor at the Institute of Systems, Control and Information Engineers
Chairman of Information Processing Society of Japan (IPSJ)
Member of the Institute of Electronics, Information and Communication Engineers

Masaki Nakamura  Professor
Bachelor of Economics from Osaka Gakuin University
After working at Nihon University, Ltd., he established KGIC in 1987.
He is the president-director of the company.
Chief Director of Information, Computer-related Industrial Health Insurance Union
Chairman of Inakayuki Information System Industry Association
Chairman of All Japan Information Industry Association Federation

Masayasu Morita  Professor
Bachelor of Arts from University of California
Master of Philosophy from University of California
Board Member, AIC, PRELS, Incorporated
CEO, Hitorrowa, Inc.

Isao Akiyama  Professor
Bachelor of Engineering from Waseda University
Laboratory Manager, Room 206, Nihon University Technology Research and Development Center

Hiroyuki Ito  Professor
Bachelor of Economics from Hokkaido Gakuin University
After working at Hokkaido University as a staff, he established Cogntion Media Inc. in 1995.
He is the president of the company.
He created "Hatsune Miku".

Tsuneo Imai  Professor
Bachelor of Engineering from Kyoto University
Master of Engineering from Kyoto University
Professor at the Institute of Systems, Control and Information Engineers
PhD candidate, University of South Carolina
Member of the Institute of Electronics, Information and Communication Engineers

Masaharu Imai  Professor
Bachelor of Engineering from Osaka University
Master of Engineering from Osaka University
Doctor of Engineering from Osaka University
Former President of the Institute of Systems, Control and Information Engineers
Member of the Institute of Electronics, Information and Communication Engineers

William K. Cummings  Professor
Bachelor of Arts from Johns Hopkins University, USA
Doctor of Philosophy from Harvard University, USA
Professor of International Education, George Washington University, USA

Koji Ueda  Professor
Bachelor of Engineering from Kyoto University
Master of Engineering from Kyoto University
Graduate School of Science and Engineering, University of California, USA
Member of the Institute of Systems, Control and Information Engineers

Tosio Okamoto  professor
Master of Science from Kyoto University
Doctor of Philosophy from Osaka University
Professor emeritus at University of Tokyo
Co-founder and Director of the Center for Interdisciplinary Research of the Social Sciences and Humanities (CIRSS)
Member of the Institute of Systems, Control and Information Engineers

Yoishitaka Kai  Professor
Bachelor of Economics from Aoyama Gakuin University
Master of Economics from Aoyama Gakuin University
Doctor of Commerce from Aoyama Gakuin University
Professor at the Institute of Systems, Control and Information Engineers
Member of the Institute of Electronics, Information and Communication Engineers

Hiroshi Kiyohara  Professor
Member of the Institute of Systems, Control and Information Engineers
Certified IT Professional in IT and Information Engineering
Certified IT Coordinator
Former Project Manager at Honda Techno Works, Inc.

Hiromi Kitayama  Professor
Member of the Institute of Systems, Control and Information Engineers
Certified IT Professional in IT and Information Engineering
Certified IT Coordinator
Former Project Manager at Honda Techno Works, Inc.

Akihiro Kinbara  Professor
Bachelor of Science and Master of Science from Kyoto Institute of Technology
Technical Engineer (Security) Information Security Association
Principal of Kyoto Computer Gakuin University
Chairman of Inakayuki Information System Industry Association

Cyril Koshy  Professor
Bachelor of Science from Technology India University
Bachelor of Engineering from Sathyabama University
Doctor of Philosophy from University of Sunderland
Former Head of Cybersecurity and Information Systems Security
Former Director of the Center for Cybersecurity and Information Systems Security

Masashi Kurataki  Professor
Bachelor of Business Administration and Master of Business Administration from University of California, USA
Professor at the Institute of Systems, Control and Information Engineers
Member of the Institute of Electronics, Information and Communication Engineers
Exploring business involving Japanese anime

Japanese anime and ICT.

In the Concentration Courses at KCGI, we explore the creation of new markets and business models. Yasuhiro Takeda is a professor who teaches Advanced Topics in Anime Planning, Production, and Promotion. Professor Takeda participated in the founding of Gainax Co., Ltd., he has served as a company Director and General Manager of the Animation Production Headquarters. He is currently the Representative Director of GAINAX Kyoto K.K. As an animation producer, Professor Takeda has been involved in numerous productions, including the video game Tengen Toppa Gurren Lagann, Magical Shopping Arcade Abenobashi, and Hanamaru Kindergarten. He also produced a television commercial celebrating the 50th anniversary of the foundation of the KCG Group in collaboration with Gainax.

Business is a question of “How much revenue?”

—- What would you say is the keyword in making anime a business?

My main job was as a producer of animation planning at Gainax. I create anime proposals, negotiate with companies with which we would like to work to determine broadcasting slots, and ensure a specific budget. Once a production is done, it is important to think how much revenue it will gather. I suppose you could say that executing that is a business.

Faculty Interview

Professor Yasuhiro Takeda

—- Please tell us what got you involved in anime.

I’ve had great success in the planning of the productions Gurren Lagann and Panty & Stocking with Garterbelt. But I didn’t plan to do this type of job. In college, I studied something completely different. Before I knew it, the events and independent productions I enjoyed doing in college had become my job. That’s why I still feel like I’m doing interesting things even now. I have decided to never forget the idea of “take the initiative in fun and interesting things” from my amateur years.

—- Please give us a message for students who wish to study anime.

Planning and producing anime requires a lot of energy. In addition, gathering funds and producing anime brings with it responsibility. Productions involve people looking at your work, receiving criticism, gathering funds, and bringing your company into the black. Thinking that far is the finished form of a plan. Believing that as long as you make a production, you are OK is just self-satisfaction. A production is only complete when it has been critiqued. Criticism can be aimed not only at your production but everything you release into the world, including your actions and words. That is why I ask students interested in studying anime to study with the spirit needed to fully face the criticisms one receives.
With a name derived from the Japanese phrase "mirai kara kita hajimete no oto" ("the first sound from the future"), Hatsune Miku is a virtual idol who will sing with a synthetic voice when a user inputs lyrics and a melody into a computer. Hatsune Miku has held live concerts not only in Japan but overseas as well, swaying the hearts of a multitude of fans.

Hiroyuki Itoh, Representative Director at Crypton Future Media Inc., the company which created the Hatsune Miku synthetic voice software that is the cause of this sensation, has joined KCGI as a professor. Professor Itoh, who continues to develop the software which produces the computerized voices, offers the following message for the young people who will lead the IT industry of the future. "The frontier of the information revolution of which we are only midway through is vast without limit and your future prospects spread before you without limit. I ask that you dedicate yourselves to your studies with this concept firmly in mind."

Crypton Future Media is neither a video game nor an anime company. Although we are involved with making music, we are also not a record company. Because we made the hobby of computer music into a business, I think of us as a "sound seller." Hatsune Miku was first offered for sale in August 2007, but I believe that the software became a chance for people to get involved in a creative activity.

It is said that humanity has experienced three revolutions in its past. The first was the agricultural revolution. Due to this revolution, human beings, who had been forced to be nomadic due to their reliance on hunting, produced food systematically and came to be able even to store it and thus began living in fixed settlements. Due to this, societies and states formed, also creating disparities in wealth. It could be said that the development of economics also became a cause of war.

The second revolution was the industrial revolution. Sources of power were discovered and the advance of innovations such as the ability to efficiently create identical items gave birth to mass production and mass consumption. This spurred trade and commerce, helping to bring about large-scale wealth. This revolution also caused a "population explosion," in the age of a high birth and high death rate prior to the industrial revolution, the human population was virtually fixed and fluctuations of wealth in society were also slight, but with the industrial revolution the human population rapidly increased.

And the third revolution is the information revolution brought about by the value of IT as represented by the internet. Prior to the internet, transmitters of information were limited and monopolistic. Sources of information included media such as newspaper companies, television and radio stations, and publishing companies, but when these groups dispatched information, it was accompanied by a significant cost in terms of facilities and human power. Further, information at this time was low in volume and unidirectional. However, the appearance of the internet has brought about this revolution in information.

The way in which information was dispatched has changed significantly.

Now the internet is an extremely close presence, appearing in the palms of our hands, on our desks, and entering our pockets. Information which can be digitized, such as news, movies, and music, is entirely informationized, making it possible to easily transmit and store it over the internet. Life and work have become extremely convenient, fun, and comfortable; in an instant you can summon and view your favorite videos and broadcast media. In addition, this information has made it possible for anyone to easily and instantaneously share about themselves with the world via Facebook, Twitter, and blogs, including the tiniest pieces of personal news.

I believe, however, that we are still merely experiencing the prelude to the changes that will occur due to the information revolution. The agricultural and industrial revolutions brought about serious changes to the way human beings lived. The changes caused by the information revolution have not yet reached that level. This is merely a transition period, and the real changes have yet to begin. I believe we will see drastic changes to peoples’ lifestyles and the world in 20 to 30 years from now. I do not, however, know what sort of changes these will be. How these will be changed has been entrusted to us and, moreover, the young people who will shoulder the next generation.
Faculty Interview

Professor Nitza Melles

The world of art and IT are intimately connected. When creative vision meets fantastic technology, the audience is drawn into another dimension. So it’s only natural that I’m involved with an educational institution that’s not only on the forefront of cutting-edge technology, but also offers an environment where students can acquire knowledge in the broad field of computers, as it evolves with creativity at an astonishing pace.

In the entertainment industry, IT permeates every aspect of our business. Whether it is using computers to record and edit music, dub movies and commercials, or the diverse training and multimedia of Cirque du Soleil, highly specialized technology and keen creativity of the team of artists and technologists are required for any of the performances I give.

This collaboration between the arts and technology is the synergetic cooperative element that is needed to produce video and audio concerts. KCGI offers students the opportunity to gain the tools they need to polish the artistic and technical knowledge they need to apply to the many aspects of the business world. Projection mapping, the quintessential technology of the evolution of art expression, has created demand for positions for information processing technicians involved in the arts, and has allowed for creative expression that far exceeds the expectations of audiences. KCGI is at the forefront of learning in this field, and provides an educational environment that pushes students to go beyond their potential.

Cirque du Soleil Main vocalist, singer/songwriter

She is a multilingual singer/songwriter born in Montreal, Canada, and has pleased crowds all over the world. She is one of three main vocalists for Cirque du Soleil, the entertainment troupe that continues to perform around the world as a circus and musical. She has been the only one to have a song that she has composed and arranged to play in the Cirque du Soleil show, making her the de facto top singer of the troupe. She does not belong to any labels, and not only composes and arranges her own music, but also does the graphic design, promotion and sales, herself.
Making the IT department the heart of the modern financial institution

The ability to analyze, understand and at times design operations

— How is the role of the IT professional changing?

IT supports making business more efficient. That's true not only in finance but in many industries. At first, because IT plays a supporting role, it was thought that all the IT engineer needed to do was to assemble some computers and write programs according to the design drawings drafted by the people working on site. But IT has advanced so far that it now handles much more than mere calculation and memory. We now know IT can be used for things we once thought only humans could do, such as judgment and reasoning. It's grown to the point where IT can now take the place of humans in fields such as financing and investment. The advance in quality has affected a change in quality. In effect, work-process design and IT implementation have become one. It's no longer possible to draw a strict line between the two. This newly created environment changes the qualities required of an IT engineer. Unlike the passive recipient of somebody else's design drawings of days past, the IT engineer of today analyzes, understands and at times designs work processes. It arises in many cases this new arrangement is more effective and efficient than the old division of labor, which divided work and think and those who make things. For people who work in IT, it's the start of a new world, with new dimensions we've never experienced. We can expect new crimes to emerge in the years to come, combining IT with marketing, with sales, with research and so on. Fintech, a neologism for the marriage of finance and IT, has now come into currency. I think many more will come.

The excitement of the new outlook on life that learning brings

— In such times, what sort of guidance do you offer students?

I once taught an MBA course. Why do people already in the working world join the program? Basically there are three patterns. Some people want to increase their level of specialization in their existing field. Others want to add managerial skills to their existing skill sets as engineers, researchers and so on. The third pattern is people want to change jobs or start their own company. Many of our students at KCGI came here immediately after graduating from university. It's a great opportunity to learn about IT and management at the same time, so I really want them to take advantage of this opportunity to challenge themselves in whatever they want to be. I encourage students who want to confront real issues, have a sharp awareness of the problems who want to improve themselves to become IT professionals and join us at KCGI. They may even be able to find companies of their own. What I often see in students today are people who are proficient at gathering information and data but struggle with creating something new from it. In my approach to teaching, I try to help students to do five things: Make a clear choice about the themes they want to pursue in their lives; Aim not just to pass the courses but to be among the best in Japan in what they do; Master the arts of writing and communicating; Go back and forth between the real world and their models (abstract structures and parameters); and Maintain personal networks after they finish the course. Study shows us that we can't see before and makers of other things look different. It changes our perspective on life and thus our way of living. That joy is something you can only experience at a university. Also, many of the people you study with become friends for life, free of ulterior motives. I want students to come to KCGI and find such friends and teachers for themselves. After graduation, students can continue with joint research. If students use their study to create large networks, I will be delighted. I said earlier that a new world is starting for IT professionals, with dimensions never experienced before. I want you to lead that process. The travails of the pioneer are many, but your prospects are boundless. At KCGI I want you to acquire the spirit of the pioneer and the strength to overcome adversity.

A role in the beginning of fintech

— Please tell us about the relationship between IT and finance.

At Mitsubishi Trust and Banking Corporation I ran the share management system, developed bond-option models and was involved in the securitization of home loans. In each case we were the first ones in Japan to try these things. I guess you could say that was the start of fintech in Japan. At heart the financial business is a world of numbers. Computers are the perfect fit for serious number-crunching, so it's no exaggeration to say that the history of finance is the history of computerization.

One of the most interesting things in finance is that it is a highly specialized field, but it also involves a lot of general knowledge. For example, in the years to come, combining IT with marketing, with sales, with research and so on. Fintech, a neologism for the marriage of finance and IT, has now come into currency. I think many more will come.

On the start of a national identification number system, and the strengthened security required with hosting the Tokyo Olympics

Professor Yoshitaka Kai developed a logistics system, as well as Japan’s first apparel MD system using AI, for Teijin Ltd., a leading Japanese textile manufacturer. Prof. Kai later moved to the Mitsubishi Trust and Banking Corporation (now Mitsubishi UFJ Trust and Banking Corporation), where he was responsible for the development and operation of an asset-management system.

Dr. Kai has 25 years of experience in the business word, Prof. Kai gives a lot of guidance on management science, finance and fintech at KCGI.

Privacy Risks Involved in a National Identification Number System

— The My Number System (social insurance and tax numbers) was introduced in 2015.

This system has great merit if it is properly used as infrastructure to support the daily life of the population; however, there are also some major risks to consider. Security and privacy are a primary concern. It will comprise unique identifies (mainly keys) in a data, so there is a lot of potential, such as its simplicity as well as big data applications through link ups in the information system to support the Japanese public. There are also expanded concerns, such as the illicit use of data and increased harm due to leaks of personal information. There are technical elements being put into place as security measures, such as encryption and authentication protocols to minimize the risks; but, not everything is resolved with technology. The design skills to select and appropriately apply suitable security level in technology to the importance of data that should be protected are also important. In addition, awareness of what range of security measures should be taken with technology is also crucial. For example, SSL (in TLS) in security technology often used on the Internet (when accessing the Web, it used with https), performs server authentication and encryption of data transmission channels, but once data has passed to the server, processing can be performed with raw data. In reality, information leaks mostly occur at this stage.

Cyberspace is the ‘fifth battlefield’

— There have been numerous incidents reported in recent years of illicit use of cyberspace.

Technology is a neutral medium. It can be used for both good and bad. There are various laws and systems being proposed and enforced to curb or eliminate the bad to protect the good, but IT (ICT) advances quickly, and these laws and systems usually trail behind. In Japan, the Basic Act on Cyber Security came into force on January 9, 2019, and stipulates the duties of the national government in measures against cyber attacks. Awareness is rising around the world towards the fact that cyberspace, following land, sea, air and space, is the fifth battlefield. Also, cyberspace easily transcends the borders of countries, and is continuing to expand. A draft international law (the Tallinn Manual) is also under evaluation to handle conflicts in cyberspace.

Even though SSL doesn't actually have any real territory that's internationally recognized, I’ve heard that they are using cyberspace to obtain funding, weapons and recruits. I’ve also heard that they are utilizing advanced technology, such as encryption. They are also improving the skills of these hackers. Naturally, those on the defense must also respond. People who are involved in the design and operation of security in cyberspace must have a robust imagination against unknown attacks. Also, there are no perfect security measurements. Preparation of response measures to take after an incident is also important. The formulation of a business continuation plan (BCP) is also required for an incident, including large-scale natural disasters.

Omotenashi (Hospitality) and Necessary Security Measures

— In 2020, Japan will host the Tokyo Olympics. Measures must also be taken from an IT perspective as well, right?

An event like the Olympics, where lots of people from all over the world come together, is attractive venue for malicious hackers. The London Olympics also fell victim to numerous, repeated cyber attacks. The Tokyo Olympics will likely be a target for attack. Also, Japan is trying to encourage more tourism and is actively expanding WiFi spots all over. It is good to improve convenience, but there are also concerns that they will be abused, such as with fraud or threats. Security measures must be fully prepared, and then we can expect to be able to host the Tokyo Olympics with Omotenashi.
KCG Computer Museum

Certified as the First Satellite Museum of the Historical Computers by Information Processing Society of Japan

About KCG Computer Museum
In 1963, student researchers of Kyoto University formed a computer study group for IBM 709/7090 and held workshops. It was the time when Information system department had not yet existed at any universities in Japan. Since then, Kyoto Computer Gakuin, Japan’s first private computer education institution, has been producing distinguished graduates who build up the foundation of information industry in Japan. We would like to introduce our culturally valuable computers which were used for our computer education. Equipment in our College, such as the NEAC System 100 in 2012 and the MZ-80K in 2013, has been gradually recognized as information processing technology heritage. The KCG Computer Museum was certified as the very first “Satellite Museum of Historical Computers” in Japan.

Information processing technology heritage NEAC System 100 (Authorized March 6, 2012)

Information processing technology heritage TOSBAG-1100D (Authorized March 18, 2018)

Information processing technology heritage TOSBAC-3400 (Authorized March 2, 2009)

Information processing technology heritage MZ-80K (Authorized March 6, 2013)

Information processing technology heritage Oct/IBM 360 (Authorized March 2, 2009)

Information processing technology heritage PDP 8/11 (Authorized March 17, 2009)

Information processing technology heritage NEAC-2206 (Authorized March 2, 2011)

Kyotō, the city for students

Kyoto has history more than 1200 years. It was once the the capital city of Japan and is still the cultural heartland of Japan. It is also an international city and many young students live in the city. KCG campuses are located in the convenient areas and you can access them from every area of Kyoto city. In addition, they are easy to reach from other places in the Kansai region such as Osaka, Nara, Kobe, and Otsu.

Surrounding Area of KCG Main Campus
There are many spots such as Ginkaku-ji Temple, which is a representative temple of the Muromachi culture, Heian Jingū Shrine, which is connected with Jidai Matsuri (one of the three biggest festivals in Kyoto), Tetsugaku-no-michi, known for its cherry blossom trees, Kyoto City Zoo, the second oldest zoo in Japan, and Kyoto City Museum are in this area (among many other spots). It is easy to come in touch with Japanese culture and history in this location!

Spot ............................................................
Ginkaku-ji Kyoto City Zoo
Tetsugaku-no-michi Heian Jingū Shrine
Nanzenji Temple Eikan-dō Zenshū-ji
Kyoto City Museum Chō-ji Temple

Surrounding Area of KCG Rakuhoku Campus
It is convenient to go to Rakuhoku area, from the center of Kyoto and Kyoto Station by the subway and the city bus from the Kitaoji subway station and bus terminal near Rakuhoku Campus. Kamigamo Shrine is near, Kitayama Street lined with modern buildings, and we can enjoy nature at the botanical garden, Midoriga-ike Pond, and Kamo River.

Spot ............................................................
Kamigamo Shrine Kyoto Botanical Garden
Midoriga-ike Pond Kitayama Street
(Also called Mizoroga-ike Pond)

Surrounding Area of KCG Kamogawa Campus
Shimogamo Shrine, related with Aoï Matsuri, which is one of the three biggest festivals in Kyoto, and the Imperial Palace in Kyoto are near the campus. This is an area rich in nature.

Spot ............................................................
Shimogamo Shrine Imperial Palace in Kyoto
Tadasu no Mori (Shrine Forest)
Kyoto City Historical Museum
Education Network

The Kyoto College of Graduate Studies for Informatics aims to realize world-class, high level IT education as a global education institution and as a leader in IT education while creating a close network with other KCG Group education institutions and collaborating with governments and universities overseas.

Kyoto Main School

The Rochester Institute of Technology is an engineering university founded in 1829 which is famous as one of the first universities in the entire United States to establish IT courses (1991). RIT also boasts top ranking in the fields of CG and IT among United States colleges. RIT concluded a sister school agreement with the Kyoto Computer Gakuen in 1996.

Kyoto Japanese Language Training Center

The Kyoto Japanese Language Training Center, a Japanese language education facility, is accredited by the Minister of Justice and has received designation as a Japanese language institute for students without 12 years of education in their country from the Ministry of Education, Culture, Sports, Science and Technology (currently received by only 26 schools in Japan and 2 overseas).

New York Office

The New York Office was established in 2000 in the New York World Trade Center as a basis for the KCG Group’s overseas operations. Although affected by the simultaneous terrorist attacks on the United States on September 11, the New York Office is now located in Rockefeller Center and has resumed its activities.

The KCG Beijing Office was established in 2002 within the National Library of China in Beijing as a base for exchange with China’s universities, with which KCG is strengthening its relationships. KCG opened the KCG Dalian Office in 2008 and the KCG Shanghai Office in 2018, through which it provides IT educational support to Chinese universities, among other activities. In 2015 KCG established the Vietnam Office.

Overview of KCGI

Name: The Kyoto College of Graduate Studies for Informatics
Parent organization: Kyoto Joho Gakuen
Address: 7 Tanakamonzen-cho, Sakyo-ku, Kyoto 606-8225, Japan
Graduate school: School of Applied Information Technology
Major: Web Business Technology Program
Credits required for completion: 44
Number of students admitted: 480 (Total capacity is 960 persons.)
Course term: 2 years
Degree: Master of Science in Information Technology (M.S. in IT)
URL: https://en.kcg.edu

Numerous IT companies, leaders of Japanese industry, are located in Japan’s center of traditional culture, Kyoto, including Rohm, Murata Manufacturing, Nintendo, Honda, Kyocera, Nidec, and Omron. Many Nobel Prize winners were also born in Kyoto. KCGI aims to take in the fantastic energy which Kyoto produces and bring it into the classroom.