メインコンテンツに移動

松岡 敦

Atsushi Matsuoka

経歴

  • 北海道大学 学士(水産学),同大学院水産科学研究院博士後期課程修了,博士(水産科学)
  • ニュー・ハンプシャー大学准教授
  • 元Takuvik International Laboratory (CNRS- University Laval),Research Associate(Remote Sensing部門のチームリーダー),元フランス国立宇宙研究センター(CNES)研究員
 

メッセージ

「リモートセンシングを活用した持続可能な地球環境の実現に向けて〜次世代を担う若者たちへのメッセージ」
専門は衛星リモートセンシング(RS)で,地球環境の変化が水圏に及ぼす影響をRSで時空間的に把握し,その改善に貢献する研究を行ってきました。水圏環境は我々にとってかけがえのない存在であり,その資源の利用は持続可能でなければなりません。そのためには,これまで蓄積してきた膨大なデータを効率よく処理し,迅速かつ客観的に現状を把握することが基軸となります。急速なITの進歩により,以前では煩雑であったRSデータのプロセスが簡便化され,今では誰でも自由に利用・共有することが可能となってきました。グローバル化が進む今日において,RSを含むITを一つのツールとして活用し,地球環境問題など様々な話題について考え,国内外で活発な議論ができる人材が育ってくることを切に願っています。

担当科目

  • Introduction to Remote Sensing for Aquatic Systems(e)

専門分野

  • 海色・マイクロ波リモートセンシング
  • 衛星海洋学
  • 水中光学
  • 放射伝達,物質循環

業績

受賞

  • 日本海洋学会論文賞: 
    Matsuoka, A., Campbell, J. W., Hooker, S. B., Steinmetz, F., Ogata, K., Hirata, T., Higa, H., Kuwahara, V. S., Isada, T., Suzuki, K., Hirawake, T., Ishizaka, J., and Murakami, H. (2022).
  • Performance of JAXA’s SGLI standard ocean color products for oceanic to coastal waters: 
    chlorophyll a concentration and light absorption coefficients of colored dissolved organic matter. Journal of Oceanography.
    https://doi.org/10.1007/s10872-021-00617-2.

招待公演

著書

  • Reynolds, R., Matsuoka, A., Hirawake, T., Bélanger, S. and Mitchell, B. G. (2015), Ocean colour algorithms and bio-optical relationships for polar seas, in Ocean Colour Remote Sensing in Polar Seas, Eds., M. Babin, K. Arrigo, S. Belanger, and M.-H. Forget, International Ocean Colour Coordinating Group (IOCCG) report Series, No. 16, International Ocean Colour Coordinating Group, ISSN: 1098-6030, ISBN: 978-1-896246-51-2, Dartmouth, Canada.

論文(リストから一部抜粋)

  • Bertin, C., Fouest, V. Le, Carroll, D., Dutkiewicz, S., Menemenlis, D., Matsuoka, A., Manizza, M., & Miller, C. E. (2025). Terrestrial browning from colored dissolved organic matter (CDOM) changes the phenology of the Arctic carbon cycle., Biogeosciences Discussion, 1–33. 
    https://doi.org/10.5194/egusphere-2025-973.
  • Li, J., Matsuoka, A., Devred, E., Hooker, S. B., Pang, X., & Babin, M. (2025). A novel GSM and fluorescence coupled full-spectral chlorophyll a algorithm for waters with high CDM content. Remote Sensing of Environment, 321, 114667.
    https://doi.org/10.1016/j.rse.2025.114667.
  • Bertin, C., Carroll, D., Menemenlis, D., Dutkiewicz, S., Zhang, H., Schwab, M., Savelli, R., Matsuoka, A., Manizza, M., Miller, C. E., Bowring, S., Guenet, B., & Le Fouest, V. (2025). Paving the way for improved representation of coupled physical and biogeochemical processes in Arctic River Plumes-A case study of the Mackenzie shelf. Permafrost and Periglacial Processes, 0, 1–15. 
    https://doi.org/10.1002/ppp.2271.
  • Choi, J. G., Matsuoka, A., Manizza, M., Dutkiewicz, S., & Lippmann, T. (2024). A New Ecosystem Model for Arctic Phytoplankton Phenology From Ice ‐ Covered to Open ‐ Water Periods : Implications for Future Sea Ice Retreat Scenarios, Geophysical Research Letters, 
    https://doi.org/10.1029/2024GL110155.
  • Zhao, H., Matsuoka, A., Manizza, M., & Winter, A. (2024). DINEOF Interpolation of Global Ocean Color Data: Error Analysis and Masking. Journal of Atmospheric and Oceanic Technology, 953–968. 
    https://doi.org/10.1175/jtech-d-23-0105.1.
  • Madani, N., Parazoo, N. C., Manizza, M., Chatterjee, A., Carroll, D., Menemenlis, D., Fouest, V. Le, Matsuoka, A., Luis, K. M., Pompei, C. S., & Miller, C. E. (2024). A Machine Learning Approach to Produce a Continuous Solar ‐ Induced Chlorophyll Fluorescence Over the Arctic Ocean JGR : Machine Learning and Computation. Journal of Geophysical Research: Machine Learning and Computation, 1, e2024JH000215. 
    https://doi.org/10.1029/2024JH000215.
  • Li, J., Matsuoka, A., Pang, X., Massicotte, P., & Babin, M. (2024). Performance of Algorithms for Retrieving Chlorophyll Concentrations in the Arctic Ocean : Impact on Primary Production Estimates. Remote Sens. 16, 892. https://doi.org/10.3390/rs16050892.
  • Li, J., Matsuoka, A., Hooker, S. B., Maritorena, S., Pang, X., & Babin, M. (2023). A tuned ocean color algorithm for the Arctic Ocean: a solution for waters with high CDM content. Optics Express, 31(23), 38494-38512. 
    https://doi.org/10.1364/OE.500340.
  • Bertin, C., Carroll, D., Menemenlis, D., Dutkiewicz, S., Zhang, H., Matsuoka, A., Tank, S., Manizza, M., Miller, C. E., Babin, M., Mangin, A., & Le Fouest, V. (2023). Biogeochemical River Runoff Drives Intense Coastal Arctic Ocean CO 2 Outgassing. Geophysical Research Letters, 50(8), 1–11. 
    https://doi.org/10.1029/2022GL102377.
  • Matsuoka, A., Babin, M., & Vonk, J. E. (2022). Decadal trends in the release of terrigenous organic carbon to the Mackenzie Delta (Canadian Arctic) using satellite ocean color data (1998–2019). Remote Sensing of Environment, 283(September), 113322. https://doi.org/10.1016/j.rse.2022.113322.
  • Asim, M., Matsuoka, A., Ellingsen, P. G., Brekke, C., Eltoft, T., & Blix, K. (2022). A new spectral harmonization algorithm for Landsat-8 and Sentinel-2 remote sensing reflectance products using machine learning: a case study for the Barents Sea (European Arctic). IEEE Transactions on Geoscience and Remote Sensing, 1–20. 
    https://doi.org/10.1109/TGRS.2022.3228393.
  • Zhao, H., Matsuoka, A., Manizza, M., & Winter, A. (2022). Recent Changes of Phytoplankton Bloom Phenology in the Northern High-Latitude Oceans ( 2003 – 2020). Journal of Geophysical Research : Oceans. 1–18. 
    https://doi.org/10.1029/2021JC018346.
  • Juhls, B., Matsuoka, A., Lizotte, M., Bécu, G., Overduin, P. P., El Kassar, J., Devred, E., Doxaran, D., Ferland, J., Forget, M. H., Hilborn, A., Hieronymi, M., Leymarie, E., Maury, J., Oziel, L., Tisserand, L., Anikina, D. O. J., Dillon, M., & Babin, M. (2022). Seasonal dynamics of dissolved organic matter in the Mackenzie Delta, Canadian Arctic waters: Implications for ocean colour remote sensing. Remote Sensing of Environment, 283(April). 
    https://doi.org/10.1016/j.rse.2022.113327.
  • Bertin, C., Matsuoka, A., Mangin, A. Babin, A., and Le Fouest V (2022). Merging satellite and in situ data to assess the flux of terrestrial dissolved organic carbon from the Mackenzie River to the coastal Beaufort Sea. Frontiers in Earth Science. https://doi.org/10.3389/feart.2022.694062.
  • Matsuoka, A., Campbell, J. W., Hooker, S. B., Steinmetz, F., Ogata, K., Hirata, T., Higa, H., Kuwahara, V. S., Isada, T., Suzuki, K., Hirawake, T., Ishizaka, J., and Murakami, H. (2021). Performance of JAXA’s SGLI standard ocean color products for oceanic to coastal waters: chlorophyll a concentration and light absorption coefficients of colored dissolved organic matter. Journal of Oceanography. 
    https://doi.org/10.1007/s10872-021-00617-2.
  • Bruhn, A. D., Stedmon, C. A., Comte, J., Matsuoka, A., Speetjens, N. J., Tanski, G., Vonk, J. E., & Sjöstedt, J. (2021). Terrestrial Dissolved Organic Matter Mobilized From Eroding Permafrost Controls Microbial Community Composition and Growth in Arctic Coastal Zones. Frontiers in Earth Science, 9(March), 1–20. 
    https://doi.org/10.3389/feart.2021.640580.
  • Hooker, S. B., Matsuoka, A., Kudela, R. M., Yamashita, Y., Suzuki, K., & Houskeeper, H. F. (2020). A global end-member approach to derive aCDOM(440) from near-surface optical measurements. Biogeosciences, 17(2), 475–497. 
    https://doi.org/10.5194/bg-17-475-2020.
  • Blix, K., Li, J., Massicotte, P., & Matsuoka, A. (2019). Developing a new machine-learning algorithm for estimating Chlorophyll-a concentration in optically complex waters: A case study for high northern latitude waters by using Sentinel 3 OLCI. Remote Sensing, 11(18), 1–23. 
    https://doi.org/10.3390/rs11182076.
  • Juhls, B., Paul Overduin, P., Hölemann, J., Hieronymi, M., Matsuoka, A., Heim, B., & Fischer, J. (2019). Dissolved organic matter at the fluvial-marine transition in the Laptev Sea using in situ data and ocean colour remote sensing. Biogeosciences, 16(13), 2693–2713. 
    https://doi.org/10.5194/bg-16-2693-2019.
  • Le Fouest, V., Matsuoka, A., Manizza, M., Shernetsky, M., Tremblay, B., & Babin, M. (2018). Towards an assessment of riverine dissolved organic carbon in surface waters of the western Arctic Ocean based on remote sensing and biogeochemical modeling. Biogeosciences, 15(5), 1335–1346. 
    https://doi.org/10.5194/bg-15-1335-2018.
  • Matsuoka, A., Boss, E., Babin, M., Karp-Boss, L., Hafez, M., Chekalyuk, A., Proctor, C. W., Werdell, P. J., & Bricaud, A. (2017). Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data. Remote Sensing of Environment, 200(July), 89–101. 
    https://doi.org/10.1016/j.rse.2017.08.009.
  • Matsuoka, A., Babin, M., & Devred, E. C. (2016). A new algorithm for discriminating water sources from space: A case study for the southern Beaufort Sea using MODIS ocean color and SMOS salinity data. Remote Sensing of Environment, 184, 124–138. 
    https://doi.org/10.1016/j.rse.2016.05.006.
  • Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., Van Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bahr, F., Bates, N. R., Benitez-Nelson, C., Bowler, B., Brownlee, E., Ehn, J. K., Frey, K. E., Garley, R., Laney, S. R., Lubelczyk, L., Mathis, J., Matsuoka, A., Mitchell, B. G., Moore, G. W. K., Ortega-Retuerta, E., Pal, S., Polashenski, C. M., Reynolds, R. A., Schieber, B., Sosik, H. M., Stephens, M., and Swift, J. H. (2012). Massive phytoplankton blooms under arctic sea ice. Science, 336(6087), 1408. https://doi.org/10.1126/science.1215065.

代表者として受けた外部研究資金

  • アメリカ海洋大気庁(NOAA), 1件
  • アメリカ国立科学財団(NSF), 1件
  • アメリカ環境保護庁(EPA), 1件
  • 宇宙研究開発機構(JAXA), 4件
  • フランス航空宇宙研究センター(CNES), 2件