Skip to main content

Atsushi Matsuoka

Atsushi Matsuoka

Profile

  • Hokkaido University Bachelor of Science (Fisheries Science) Doctoral Program, Graduate School of Fisheries Science Doctor of Fisheries Science
  • Associate Professor, University of New Hampshire
  • Formerly at Takuvik International Laboratory (CNRS-University Laval), Research Associate (Team Leader, Remote Sensing Department), Formerly at the French National Center for Space Studies (CNES)
 

Message

"Toward Realizing a Sustainable Global Environment Using Remote Sensing: A Message to the Next Generation My specialty is satellite remote sensing (RS)"
I have conducted research to contribute to improving the situation by using remote sensing to understand the spatio-temporal impacts of global environmental changes on the hydrosphere.The aquatic environment is irreplaceable for us, and its resources must be used sustainably.To achieve this, the key lies in efficiently processing the vast amount of data accumulated to date and swiftly and objectively grasping the current situation.Rapid advances in IT have simplified the once-cumbersome process of handling remote sensing data, making it freely accessible and shareable by anyone today.In today's increasingly globalized world, I earnestly hope that individuals will emerge who can utilize IT, including remote sensing, as a tool to contemplate various topics such as global environmental issues and engage in active discussions both domestically and internationally.

Responsible Subject

  • Introduction to Remote Sensing for Aquatic Systems(e)

Field of Specialization

  • Ocean Color Microwave Remote Sensing
  • Satellite Oceanography
  • Underwater Optics
  • Radiative transfer, material cycle

Business Performance

Awards

  • The Oceanographic Society of Japan Paper Award:
    Matsuoka, A., Campbell, J. W., Hooker, S. B., Steinmetz, F., Ogata, K., Hirata, T., Higa, H., Kuwahara, V. S., Isada, T., Suzuki, K., Hirawake, T., Ishizaka, J., and Murakami, H. (2022).
  • Performance of JAXA’s SGLI standard ocean color products for oceanic to coastal waters: 
    chlorophyll a concentration and light absorption coefficients of colored dissolved organic matter. Journal of Oceanography.
    https://doi.org/10.1007/s10872-021-00617-2.

Guest Appearance

Books

  • Reynolds, R., Matsuoka, A., Hirawake, T., Bélanger, S. and Mitchell, B. G. (2015), Ocean colour algorithms and bio-optical relationships for polar seas, in Ocean Colour Remote Sensing in Polar Seas, Eds., M. Babin, K. Arrigo, S. Belanger, and M.-H. Forget, International Ocean Colour Coordinating Group (IOCCG) report Series, No. 16, International Ocean Colour Coordinating Group, ISSN: 1098-6030, ISBN: 978-1-896246-51-2, Dartmouth, Canada.

Papers (partial list)

  • Bertin, C., Fouest, V. Le, Carroll, D., Dutkiewicz, S., Menemenlis, D., Matsuoka, A., Manizza, M., & Miller, C. E. (2025). Terrestrial browning from colored dissolved organic matter (CDOM) changes the phenology of the Arctic carbon cycle., Biogeosciences Discussion, 1–33. 
    https://doi.org/10.5194/egusphere-2025-973.
  • Li, J., Matsuoka, A., Devred, E., Hooker, S. B., Pang, X., & Babin, M. (2025). A novel GSM and fluorescence coupled full-spectral chlorophyll a algorithm for waters with high CDM content. Remote Sensing of Environment, 321, 114667.
    https://doi.org/10.1016/j.rse.2025.114667.
  • Bertin, C., Carroll, D., Menemenlis, D., Dutkiewicz, S., Zhang, H., Schwab, M., Savelli, R., Matsuoka, A., Manizza, M., Miller, C. E., Bowring, S., Guenet, B., & Le Fouest, V. (2025). Paving the way for improved representation of coupled physical and biogeochemical processes in Arctic River Plumes-A case study of the Mackenzie shelf. Permafrost and Periglacial Processes, 0, 1–15. 
    https://doi.org/10.1002/ppp.2271.
  • Choi, J. G., Matsuoka, A., Manizza, M., Dutkiewicz, S., & Lippmann, T. (2024). A New Ecosystem Model for Arctic Phytoplankton Phenology From Ice ‐ Covered to Open ‐ Water Periods : Implications for Future Sea Ice Retreat Scenarios, Geophysical Research Letters, 
    https://doi.org/10.1029/2024GL110155.
  • Zhao, H., Matsuoka, A., Manizza, M., & Winter, A. (2024). DINEOF Interpolation of Global Ocean Color Data: Error Analysis and Masking. Journal of Atmospheric and Oceanic Technology, 953–968. 
    https://doi.org/10.1175/jtech-d-23-0105.1.
  • Madani, N., Parazoo, N. C., Manizza, M., Chatterjee, A., Carroll, D., Menemenlis, D., Fouest, V. Le, Matsuoka, A., Luis, K. M., Pompei, C. S., & Miller, C. E. (2024). A Machine Learning Approach to Produce a Continuous Solar ‐ Induced Chlorophyll Fluorescence Over the Arctic Ocean JGR : Machine Learning and Computation. Journal of Geophysical Research: Machine Learning and Computation, 1, e2024JH000215. 
    https://doi.org/10.1029/2024JH000215.
  • Li, J., Matsuoka, A., Pang, X., Massicotte, P., & Babin, M. (2024). Performance of Algorithms for Retrieving Chlorophyll Concentrations in the Arctic Ocean : Impact on Primary Production Estimates. Remote Sens. 16, 892. https://doi.org/10.3390/rs16050892.
  • Li, J., Matsuoka, A., Hooker, S. B., Maritorena, S., Pang, X., & Babin, M. (2023). A tuned ocean color algorithm for the Arctic Ocean: a solution for waters with high CDM content. Optics Express, 31(23), 38494-38512. 
    https://doi.org/10.1364/OE.500340.
  • Bertin, C., Carroll, D., Menemenlis, D., Dutkiewicz, S., Zhang, H., Matsuoka, A., Tank, S., Manizza, M., Miller, C. E., Babin, M., Mangin, A., & Le Fouest, V. (2023). Biogeochemical River Runoff Drives Intense Coastal Arctic Ocean CO 2 Outgassing. Geophysical Research Letters, 50(8), 1–11. 
    https://doi.org/10.1029/2022GL102377.
  • Matsuoka, A., Babin, M., & Vonk, J. E. (2022). Decadal trends in the release of terrigenous organic carbon to the Mackenzie Delta (Canadian Arctic) using satellite ocean color data (1998–2019). Remote Sensing of Environment, 283(September), 113322. https://doi.org/10.1016/j.rse.2022.113322.
  • Asim, M., Matsuoka, A., Ellingsen, P. G., Brekke, C., Eltoft, T., & Blix, K. (2022). A new spectral harmonization algorithm for Landsat-8 and Sentinel-2 remote sensing reflectance products using machine learning: a case study for the Barents Sea (European Arctic). IEEE Transactions on Geoscience and Remote Sensing, 1–20. 
    https://doi.org/10.1109/TGRS.2022.3228393.
  • Zhao, H., Matsuoka, A., Manizza, M., & Winter, A. (2022). Recent Changes of Phytoplankton Bloom Phenology in the Northern High-Latitude Oceans ( 2003 – 2020). Journal of Geophysical Research : Oceans. 1–18. 
    https://doi.org/10.1029/2021JC018346.
  • Juhls, B., Matsuoka, A., Lizotte, M., Bécu, G., Overduin, P. P., El Kassar, J., Devred, E., Doxaran, D., Ferland, J., Forget, M. H., Hilborn, A., Hieronymi, M., Leymarie, E., Maury, J., Oziel, L., Tisserand, L., Anikina, D. O. J., Dillon, M., & Babin, M. (2022). Seasonal dynamics of dissolved organic matter in the Mackenzie Delta, Canadian Arctic waters: Implications for ocean colour remote sensing. Remote Sensing of Environment, 283 (April). 
    https://doi.org/10.1016/j.rse.2022.113327.
  • Bertin, C., Matsuoka, A., Mangin, A. Babin, A., and Le Fouest V (2022). Merging satellite and in situ data to assess the flux of terrestrial dissolved organic carbon from the Mackenzie River to the coastal Beaufort Sea. Frontiers in Earth Science. https://doi.org/10.3389/feart.2022.694062.
  • Matsuoka, A., Campbell, J. W., Hooker, S. B., Steinmetz, F., Ogata, K., Hirata, T., Higa, H., Kuwahara, V. S., Isada, T., Suzuki, K., Hirawake, T., Ishizaka, J., and Murakami, H. (2021). Performance of JAXA’s SGLI standard ocean color products for oceanic to coastal waters: chlorophyll a concentration and light absorption coefficients of colored dissolved organic matter. Journal of Oceanography. 
    https://doi.org/10.1007/s10872-021-00617-2.
  • Bruhn, A. D., Stedmon, C. A., Comte, J., Matsuoka, A., Speetjens, N. J., Tanski, G., Vonk, J. E., & Sjöstedt, J. (2021). Terrestrial Dissolved Organic Matter Mobilized From Eroding Permafrost Controls Microbial Community Composition and Growth in Arctic Coastal Zones. Frontiers in Earth Science, 9 (March), 1–20. 
    https://doi.org/10.3389/feart.2021.640580.
  • Hooker, S. B., Matsuoka, A., Kudela, R. M., Yamashita, Y., Suzuki, K., & Houskeeper, H. F. (2020). A global end-member approach to derive aCDOM (440) from near-surface optical measurements. Biogeosciences, 17(2), 475–497. 
    https://doi.org/10.5194/bg-17-475-2020.
  • Blix, K., Li, J., Massicotte, P., & Matsuoka, A. (2019). Developing a new machine-learning algorithm for estimating Chlorophyll-a concentration in optically complex waters: A case study for high northern latitude waters by using Sentinel 3 OLCI. Remote Sensing, 11(18), 1–23. 
    https://doi.org/10.3390/rs11182076.
  • Juhls, B., Paul Overduin, P., Hölemann, J., Hieronymi, M., Matsuoka, A., Heim, B., & Fischer, J. (2019). Dissolved organic matter at the fluvial-marine transition in the Laptev Sea using in situ data and ocean colour remote sensing. Biogeosciences, 16(13), 2693–2713. 
    https://doi.org/10.5194/bg-16-2693-2019.
  • Le Fouest, V., Matsuoka, A., Manizza, M., Shernetsky, M., Tremblay, B., & Babin, M. (2018). Towards an assessment of riverine dissolved organic carbon in surface waters of the western Arctic Ocean based on remote sensing and biogeochemical modeling. Biogeosciences, 15(5), 1335–1346. 
    https://doi.org/10.5194/bg-15-1335-2018.
  • Matsuoka, A., Boss, E., Babin, M., Karp-Boss, L., Hafez, M., Chekalyuk, A., Proctor, C. W., Werdell, P. J., & Bricaud, A. (2017). Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data. Remote Sensing of Environment, 200 (July), 89–101. 
    https://doi.org/10.1016/j.rse.2017.08.009.
  • Matsuoka, A., Babin, M., & Devred, E. C. (2016). A new algorithm for discriminating water sources from space: A case study for the southern Beaufort Sea using MODIS ocean color and SMOS salinity data. Remote Sensing of Environment, 184, 124–138. 
    https://doi.org/10.1016/j.rse.2016.05.006.
  • Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., Van Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bahr, F., Bates, N. R., Benitez-Nelson, C., Bowler, B., Brownlee, E., Ehn, J. K., Frey, K. E., Garley, R., Laney, S. R., Lubelczyk, L., Mathis, J., Matsuoka, A., Mitchell, B. G., Moore, G. W. K., Ortega-Retuerta, E., Pal, S., Polashenski, C. M., Reynolds, R. A., Schieber, B., Sosik, H. M., Stephens, M., and Swift, J. H. (2012). Massive phytoplankton blooms under arctic sea ice. Science, 336(6087), 1408. https://doi.org/10.1126/science.1215065.

External research funds received as representatives

  • National Oceanic and Atmospheric Administration (NOAA), 1 case
  • National Science Foundation (NSF), 1 case
  • U.S. Environmental Protection Agency (EPA), 1 case
  • Japan Aerospace Exploration Agency (JAXA), 4 cases
  • Centre National d'Etudes Spatiales (CNES), 2 cases